Security Analysis of Vendor Customized Code
in Firmware of Embedded Device

Muging Liu®, Yuanyuan Zhang, Juanru Li, Junliang Shu,
and Dawu Gu

Lab of Cryptology and Computer Security,
Shanghai Jiao Tong University, Shanghai, China
liumuging@sjtu. edu. cn

Abstract. Despite the increased concerning about embedded system security,
the security assessment of commodity embedded devices is far from being
adequate. The lack of assessment is mainly due to the tedious, time-consuming,
and the very ad hoc reverse engineering procedure of the embedded device
firmware. To simplify this procedure, we argue that only a particular part of the
entire embedded device’s firmware, as we called vendor customized code,
should be thoroughly analyzed. Vendor customized code is usually developed to
deal with external inputs and is especially sensitive to attacks compared to other
parts of the system. Moreover, vendor customized code is often highly specific
and proprietary, which lacks security implementation guidelines. Therefore, the
security demands of analyzing this kind of code is urgent.

In this paper, we present empirical security analysis of vendor customized
code on commodity embedded devices. We first survey the feasibility and
limitations of state-of-the-art analysis tools. We focus on investigating typical
program analysis tools used for classical security assessment and check their
usability on conducting practical embedded devices’ firmware reverse engi-
neering. Then, we propose a methodology of vendor customized code analysis
corresponding to both the feature of embedded devices and the usability of
current analysis tools. It first locates the vendor customized code part of the
firmware through black-box testing and firmware unpacking, and focuses on
assessing typical aspects of common weakness of embedded devices in the
particularly featured code part.

Based on our analysis methodology, we assess five popular embedded
devices and find critical vulnerabilities. Our results show that: (a) the workload
of assessing embedded devices could be significantly reduced according to our
analysis methodology and only a small portion of programs on the device are
needed to be assessed; (b) the vendor customized code is often more error-prone
and thus vulnerable to attacks; (c) using existing tools to conduct automated
analysis for many embedded devices is still infeasible, and manual intervention
is essential to fulfil an effective assessment.

Keywords: Security assessment - Vendor customized code - Embedded device

This work was partially supported by the Major Program of Shanghai Science and Technology
Commission (Grants No.: 15511103002).

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
R. Deng et al. (Eds.): SecureComm 2016, LNICST 198, pp. 722-739, 2017.
DOI: 10.1007/978-3-319-59608-2_40

Security Analysis of Vendor Customized Code in Firmware 723

1 Introduction

Embedded devices are nowadays widely deployed in not only industrial environment
but also in personal residences. While the embedded devices are becoming more and
more prevailing, their functionalities are becoming more sophisticated. Smart embed-
ded devices are used to perform home network routing, TV signal receiving and
decoding, real-time camera monitoring and security altering, etc. As a result, the code
base of current embedded device is much larger compared to previous one, and will
become even more complex with the evolvement of smart homes and related
Internet-connected devices

Security issues often compose severe threats to embedded devices and applications
being deployed. Unfortunately, many embedded devices are designed and implemented
without a clear and well-defined security goal. An observation is that the development
of embedded device tends to repeat the mistakes once occurred on developing desktop
computer systems. However, while manufacturers and researchers invest time and
money in testing and securing them, the status of security assessment for those
embedded devices is far from well-developed since the assessment tool is insufficient.
Since a profusion of embedded devices have been developed by various manufacturers
and been used in different environments. this inherent diversity makes the universality
of security analysis a very difficult goal to be achieved. Although a multitude of
research works have been proposed, less developed tool is universal to different
devices. Although a large portion of research works aim to develop novel and auto-
mated analysis techniques suitable for embedded device, to the best of our knowledge,
most of those techniques are only suitable for a small range of device models. Due to
the lack of proper tool, security assessment of embedded device is well-known as a
highly skilled procedure and requires expertise, which is still not systematic and
practical. Hence, to help developers testing the security of embedded devices, not only
should we transit the experience and best practice of security analysis for classical
computer systems to the analysis of embedded device, but also should we consider the
restriction of tools and formulate proper security assessment procedure that is practical
and universal.

To employ effective and in-depth analysis, manual effort is still essential. However,
since the manual analysis (e.g., reverse engineering of the firmware of the embedded
device) is often time-consuming, the scalability must be effectively controlled to make
such analysis feasible. An important aspect of reducing the amount of analyzing work
is to elaborately filter out unnecessary targets. Particularly, it is necessary to extract and
analyze only those executables related to possible attack surface of the embedded
device. Thus the problem is how to locate such executables. The vendor of the
embedded device often provides a firmware containing both operating system and the
applications. A common observation is that most of the code in the firmware is reused
(e.g., OS and standard libraries) and is publicly certificated, and it is often laborious and
unnecessary to verify every part of the firmware. Therefore, focusing on the code
related to high level operations of the device (e.g., network communication, user
interaction) is more likely to find potentially vulnerability.

724 M. Liu et al.

The target of this paper is to illustrate the security analysis methodology of vendor
customized code assessment. Vendor customized code (VCC) denotes to the code
fulfilling specific functionalities of the device. For instance, a wireless router may
contain particular code to fulfil the authentication of the user. That code usually per-
forms a proprietary authentication implemented by the vendor and is therefore not
publicly known. This kind of code is often not fully evaluated by professional security
analyst and is error-prone. Our security assessment thus focuses on such vendor cus-
tomized code trying to find security flaws. In detail, our security assessment focuses on
four typical aspects: protocol cryptographic misuse, identity authentication, firmware
integrity tampering, and incorrect patching of known vulnerability. This helps us
concentrate the analysis task and conduct practical operations.

To employ the assessment, we first summarize to what extend could the prevailing
commodity program analysis techniques and automated security assessment tools be
applied to existing embedded device systems. The issues of analysis of embedded
devices are concluded and we propose some solutions to address them practically. The
next goal is to find vendor customized code and analyze it. To this end, we present a
systematic security assessment procedure to help conduct firmware reverse engineering
and vendor customized code searching. We expect our proposed procedure to dispel
misconceptions and mystifications of embedded devices’ security assessment, and
further promote the analysis efficiency of typical embedded devices. Notice that our
assessment is not trying to answer questions like “are there any security flaws in the
device” or “are some functionalities of this device is secure”. Instead, our methodology
is to answer the questions that how a vendor feature is implemented, and whether the
implementation (vendor customized code) violates some expectations for the feature.

To evaluate the effectiveness of our methodology, we demonstrate the experimental
results using five embedded devices including two wireless routers, one smart camera,
one modem, and a smart CDN device. By adopting our methodology, vendor cus-
tomized code can be located accurately and the amount of code needed to analyze is
reduced significantly for each device. What’s more, the extraction of vendor cus-
tomized code allows us to employ in-depth security assessment, which reveals critical
security flaws among those devices that are not discovered before.

2 Issues of Firmware Analysis

In this section we briefly review the state-of-the-art tools and techniques proposed for
embedded devices’ firmware analysis, and discuss their deficiencies. Although many
classical security analysis techniques are applicable for embedded device’s code,
corresponding analysis tools may not, or at least not fully, adapted. We summarize
major issues of current analyses in the following.

2.1 Firmware Acquiring

Unlike commodity personal computer, the executable code of operating system and
applications of embedded device are not easily accessed. Obtaining firmware of the

Security Analysis of Vendor Customized Code in Firmware 725

device is usually the most direct and the only way of analyzing target programs. To
obtain the firmware of a device, two aspects should be concerned: the updating process
of firmware, and the storage format of the device. Both of them are the frequently
utilized sources to help acquire complete or part of the firmware.

The most common way for users to update their embedded devices is to uploading
an firmware image provided by the vendor via a specific interface (an upgrade page for
web management in most routers, upgrade utilities for Apple Airport, HP Printer, etc.)
Thus analyst has the chance to intercept this process and extract the firmware image.
Although previous studies often utilize the accessed URL of the update process and use
crawler to download firmware packages from vendor’s website, especially for large
scale analysis [1], many devices often perform automatic and silent update checking to
upgrade firmware. For those upgrade routines in which firmware packages are not
direct accessible to users, manual analysis is still required to trace the upgrading agents
and network traffic (and obtain the firmware).

Another major source of firmware is the storage medium of devices. For most
embedded devices, softwares and configurations are stored in their local storage, such
as ROM and flash. Thus analysts can manually dump stored content for further
unpacking. This technique for device repairing and memory forensics has been widely
applied to firmware analysis [2] with the growing concern of embedded security. To
hamper firmware dumping, SoCs of some vendor may encrypt the firmware in ROM.
In this case, although advanced dumping methods such as half-blind attack [3] can be
applied, much manual intervention are required and sometimes the analyst may make
use of known vulnerability (e.g., memory corruption) to help dump data.

2.2 Firmware Unpacking

In most cases, the obtained firmware is a single image that requires to be separated into
different parts according to it’s original layout organization. State-of-the-art tools such
as Binwalk [4], FRAK [5], and BAT [6] provide functionalities for standard format
firmware unpacking. By scanning signatures of common file systems and file formats in
firmware images, individual files or a whole file system will be identified and extracted
automatically and recursively. If the header of a common file system is identified, it is
used as the identifier to split the image, and the cut out filesystem part is able to be
mounted on another normal Linux system. After that, files inside the image are
available to access.

In our practice, however, although those unpacking tools are sufficient for most
Linux based firmwares, which contains a common file system (squashfs, jffs2, etc.),
there are still many so-called monolithic firmware images of Real- Time Operating
System (RTOS), which are packed with proprietary formats. For those images, uni-
versal tools often fail to identify and unpack them.

Another situation is that the acquired firmware is only a raw image of storage dump
instead of a well formatted package, and there often does not exist the concept of file in
such image. In this case, manual effort on determining the entry point of the raw
bootloader becomes the last resort to recover possible system kernels and software
applications, even if it is very complicated and tedious.

726 M. Liu et al.

2.3 Code Debugging

Debugging code on embedded device is inconvenient and often impossible. A com-
mercial off-the-shelf embedded device is rarely enabled debugging functionality of its
main board. Comparing with a development board, a released device has no debugging
peripherals to monitor the running state of the CPU and memory. Meanwhile, a full
debugging solution including technique documents and debugger softwares is not
provided either. Thus, it is usually impossible to directly debug a device like what
developers do.

To implement the task of debugging, analysts utilize alternative measures. For
instance, when using GDB stub [7] to debug, the device should execute a piece of stub
code to build a remote debugging tunnel before booting. Then, the stub downloads and
executes the original firmware. Also, if the system of the device is an embedded Linux
System, analyst could attach debug server to specific running process and debug it. But
to implement those functionalities inevitably involves manual intervening. As the
vendors are not likely to provide the debugging privilege to normal user, analyst should
either insert such a stub before booting process or gain a root privilege of the devices,
which are both not easy to achieve.

2.4 Code Emulation

Emulation is a promising alternative way to achieve dynamic code analysis and inspect
any run-time information. State-of-the-art emulators support most architectures (MIPS,
ARM) that embedded devices are adopting. The overhead for emulation is also
acceptable (four times slower than the execution of native code according to [8]). But a
main restriction for emulation is that it often requires a full system emulation to execute
the code correctly. For an embedded system image, it is not emulated as easy as
desktop systems. Desktop operating system only requires few I/O devices (hard drive,
screen, etc.) to boot up. Those I/O devices work with a clear protocol to emulate. For a
embedded device, on the contrary, because neither peripherals details nor board support
package of a devices are easily known for an analyst, full or approximate system level
emulation is usually impossible.

Previous works [9] try to address this issue by utilizing process-level emulation or
run an ELF executable file in another emulated Linux environment. Unfortunately, this
technique is not always effective since a large portion of embedded software access
NVRAM to load/store the configurations, which is essential to the execution but hard
to be accurately emulated.

3 Vendor Customized Code Analysis

3.1 Target

As a complex combination of tightly connected softwares, an embedded system con-
sists of many parts and components such as bootloader, operating system, daemon
software, shared libraries, etc. Among them, most are auxiliary components. For

Security Analysis of Vendor Customized Code in Firmware 727

example, DHCP daemon in a router, decompression libraries in bootloader are used to
be implemented using open-source code base or mature solution, which are vetted
beforehand and rarely have vulnerabilities. So, for a specific embedded device, we
should focus on those vendor features which are implemented by the vendor self, and
only specific for one or a series of device. The code to implement those features is often
the particular part of the system that accepts user’s input, which means the attack
surface is restricted to this part of code. We denote this part of code as the vendor
customized code. In a word, in the firmware of an embedded device, vendor cus-
tomized code indicates to those proprietary code which are implemented for some
vendor features.

In the following sections, we will demonstrate our security concern about vendor
features and our methodology to locate and assess vendor customized code. In detail,
we try to answer the following investigative questions of common functionalities
related:

— Q1: Is the protocol properly protecting private data transferring on the Internet?
Since the “Never roll your own cryptography” principle is not familiar to
non-expert developers, many home-brewed cryptographic procedures are used in an
embedded device. Meanwhile, due to the inherent complexity of cryptographic
libraries, cryptographic misuse becomes another critical problem [10]. Thus any
proprietary protocol should be assessed to find potential cryptographic flaws.

— Q2: Can the device properly authenticate a granted user accessing this device?
Nowadays many embedded devices utilize an HTTP management interface for user
to set up device configurations. Vendor may exclude unnecessary session modules,
which are commonly used in current web authentication application from the web
server program of the device. This introduces new authentication factors and
potentially causes various security problems. Another common problem in
embedded devices is that vendor may intentionally leave some backdoors to access
the device conveniently [11, 12]. This often tends to be a serious security threat and
leads to security breach to the device.

— Q3: Could the integrity of firmware in this device self be preserved?
Modification attacks against firmware [5] often inject malicious code into a device,
and the final user turns to be the specific victim. Since consumers are usually not
able to distinguish a refurbished device and will not know if the software in a device
has been modified, attacker could modify the original executables on the device
before it is sent to the end-user to fulfil the attack. Meanwhile, attacker could also
intercept the firmware update process of the device and inject malicious image if the
integrity checking is missing. For these reasons, we should consider whether the
device adopts a robust code integrity checking scheme to protect the system against
any unauthorized code’s execution.

— Q4: Have previous vulnerabilities been correctly patched?

Some failed patches [13, 14] for PC software or mobile software has been witnessed
in recent years. This would also happen to embedded devices, and thus additional
assessment on a patched code is still essential.

728 M. Liu et al.
3.2 Searching Vendor Customized Code

Black-Box Behavior Analysis. Part of vendor features are obvious such as video
capturing for a smart camera, while much more of those are hidden. For example,
automatic upgrading of a device may not be acknowledged by the users, but clues of
this behavior can be found in the network record.

It is what we concerned of to discover vendor features in this stage of analysis. In
one hand, we test any functionalities of target device, by feeding data normal or
abnormal and recording the response. In the other hand, during the blackbox analysis,
the network traffic is captured which reveal the corresponding host, port and protocol
for any network connection.

Executable Retrieving. In this section, we will show how we derive binary code,
which enable our white-box analysis for target devices.

We derive the code from two major sources, one is a running device, and the other
one is device firmware package for device upgrading or recovering.

We can obtain software code of a running device, if we can access the console of
this device. Possible methods are, utilizing previous vulnerability to get a shell,
manufacturing a malicious upgrading firmware package to get a backdoor, connecting
to the console of device via UART interface directly, etc. If any of those attempts
succeed, we can easily collect binary codes, executable files and runtime information.

The other method is to decompose the firmware package. file utility and binwalk [4]
are used to identify known format for file and data blob. If the steps above failed, which
usually happens to a monolithic operating system, we try to find the correct base
address of the image, and then get a more precise disassembly code.

Vendor Customized Code Locating. The final step of our searching is to locate some
code snippets which are responsible for the vendor features we concern about.

This step plays an important role on minimizing the range of code analysis by
restricting it into few small pieces.

In detail, two code locating schemes can be followed depending on whether we can
access to the running device, respectively. If we are able to access to the running
device, listening port/alive connection can be used to infer the responsible process. For
example, we can execute ‘Isof -i TCP:80 -n’ or ‘netstat-In” command to get the process
ID for the web server running in the devices. Although such utilities may not installed
in the devices, we can upload a static linked utility to the device, since we have root
privilege. Some devices adopt tailoring embedded Linux system, which have no
required utilities (‘nc’, ‘wget’, ‘chmod’, etc.), to upload a executable file directly. In
this case, we first copy an existing file which already have ‘X’ permission, and then
overwrite the copy by ‘echo’ arbitrary bytes into this copy. As far as we known, since
all the shell for Linux enable ‘cp’ and ‘echo’ command, this method is universal for all
devices which adopt Linux operating system. We are also able to obtain the corre-
sponding program binary by following the symbolic link, which is located at
‘/proc/PID/exe’. Any shared libraries which are loaded in the process can be also found
in ‘/proc/self/map files/” or ‘/proc/self/maps’. To confirm whether a process is related to

Security Analysis of Vendor Customized Code in Firmware 729

some features, we kill the running process, and observe whether the vendor features are
still working.

The other scheme is a static string analysis based. We perform keyword string
searching for every extracted executable from the whole firmware image. For a specific
feature, some critical keyword should be used by the code. For example, if the target
feature is a HTTP server running in the device, GET, POST, HTTP, Host can be a set of
keywords. If we find an executable contains specific keywords, we choose it as the
candidate executable for the following security assessment.

3.3 Security Assessment of Vendor Customized Code

Our assessment is to recovery any details of vendor customized code. As the analysis
scope has been minimized and restricted, coarse-grained manual static assessment is
feasible in an acceptable period of time, to understand the basic behavior for the VCC.
But there are also many pieces of code are complicated, and also not easy as well as
necessary to understand. For example, some encoding/decoding functions may be
significant for protocol analysis, which only contains encoding algorithm. We do not
have to be aware of the details of this implementation, but only need obtain some
output for some specific input. In this case, We try to debug, or emulate the piece of
code. Some executable files depend no peripherals, thus we run and debug it in an
QEMU emulated Linux system for the corresponding architecture. We also emulate
those routines by unicorn engine, if no unknown initialized global variables or I/O will
be accessed during the execution of those routines. We may also need to derive the
input for specific output. In this situation, we utilize angr to perform a dynamic
symbolic execution. To achieve this, we feeding the routine a symbolic input, and
explore the path satisfying the constraints for output data at exit point of the routine.

4 Experimental Evaluation

In this section, we investigate five commodity embedded devices in Chinese market
including two wireless routers, one modem, one smart Content Delivery Network
(CDN) device, and a smart camera. We first report our analyzing results of firmware
and vendor customized code of these devices. Then we discuss the security assessment
of vendor customized code focusing on the issues mentioned in Sect. 3.3, and report
the discovered vulnerabilities.

4.1 General Analysis
The five devices we choose to assess are:

— TP-LINK WR740nv5: a wireless router produced by TP-LINK, the world largest
WLAN device manufacturer.

— TOTOLINK AS850R: a wireless router produced by TOTOLINK, a networking
equipment vendor in Korea.

730 M. Liu et al.

HUAQIN HGU42]: a fiber optic modem used by China Telecom, the major ISP in
China.

Thunder Money Maker: a smart CDN device manufactured by Thunder Corporation.
Yi Smart Webcam, a smart camera released by Xiaomi Inc., one of the leading
Chinese consuming electronics cooperations.

For each device, we test every functionality of it, try to observe how the device

behaves and record any network event as mentioned in Sect. 3.2. After that we figure
out some vendor features for each devices:

Different from many other routers of TP-LINK that adopt embedded Linux system,
TP-LINK WR740nv5 is based on VxWorks, which is a prevailing RTOS. We find
that this device will check if a user uploaded firmware package is valid or not.
As a tiny CDN node, Thunder Money Maker shares customer’s bandwidth to
Thunder CDN Network, and earns commission from Thunder Corporation
according to the amount of uploaded data. It will automatically download upgrade
package via HTTP protocol. Moreoover, we observed the device frequenly prompt
SSL request to the URL kjapi.peiluyou.com.

TOTOLINK A850R is a Linux based wireless router. Common features for home
router are provided via an HTTP based interface. During our test, we found that no
cookie is used to authenticate web users (the response contains no ‘Set-Cookies’
header for a successful login request), which suggests that device uses an uncom-
mon way for authentication.

Yi Smart Webcam allows users to bind their mobile phones to the camera, then the
real-time captured video can be watched in a corresponding app on user’s phone.
The format of video stream tansfered via Internet is unkonwn. Thus we guess the
data is encrypted or some-kind proessed. Also we notice that the device listens on a
strange TCP port, and response a magic string when a client connects to it.
HUAQIN HGU421 allow users to login to configure the device via a WEB inter-
face. But only a low-privileged account is given to user.

4.2 Firmware Analysis

We first try to gain access to each device, as mentioned in Sect. 3.2. We find four of
them disclose an access terminal via different ways.

For WR740 and HGU421, we direct access them via TTL.

For A850R, a known PoC of remote command execution vulnerability is used.
For Thunder, we replace the upgrading package during the auto-upgrading process,
and implant a backdoor.

We also scan for any known-formated blob for those device with firmware package

provided. The results are listed in Table 1.

After the primary analysis, we show that it is able to retrieve executable files (ELF

files) for four Linux based devices (from known format file system image, or download

Security Analysis of Vendor Customized Code in Firmware 731

Table 1. Firmware format and content analysis

Device | Firmware format | File carving result

Thunder |Zip file None

WR740 | Unknown Some zlib compress image
A850R | Unknown A standard squashfs file system
WebCam | Unknown A jffs2 file system

HGU421 | - -

from a running device). The only device whose executables are not able to be extracted
is TPLINK WR740. To address, we utilize the memory dumping functionality provide
by UART console to directly retrieved the application code. Since no UART pin is
provided on the mainboard of WR740, we distinguish the corresponding pins of
AR9331 microcontroller according to its datasheet [15], and directly welded two
jumper wires to lead them out (as depicted in Fig. 1). Finally we conduct memory
dumping to obtain a raw image of the memory. After the dumping, we obtain the
memory image containing kernel and application.

We also decompress all compressed blob in the firmware package, list all the strings
appearing in those images using strings utility. Some strings such as “auto-booting...”,
“I’'m booting now...... ”, and “Press Ctrl + C or Shift + C to stop auto-boot...” indicate
the existence of the bootloader. To determine the base address of the bootloader, we find
a piece of code of switch statement by searching the switching jump instruction (jr $v0).
Before swiching jump instruction, few instructions (sitiu $v0, $v1, 9; beqz $v0, default,
nop;..; li $v0, 0x8046FE70; addu $v0, $vi; lw $v0, 0($v0); jr $v0) reveals the virtual
address (0x8046FE70) and size (9) of the jump table. It’s also able to find the starts of
most case blocks, because case blocks are usually after the end (a jump instruction to the
end of swich statement) of another case block. Since all the case blocks should has a
corresponding pointer in the jump table, we can easily deduce the bootloader is loaded to
the address of 0x80400000. Once the base address is determined, this image can cor-
rectly disassembled and most of the binary code is readable.

4.3 Vendor Customized Code Searching

To locate the vendor customized code out of all the retrieved executable code, various
criteria are applied to five devices as mentioned in Sect. 3.2. In the following, we
demonstrate how we locate the corresponding vendor customized code for each vendor
feature, and show the amount of assessment is significantly reduced after it (Table 2).

— As TP-LINK WR740nv5 has a fully unknown formated firmware, we firstly found
the bootloader has a recovery functionality interacting with users on the serial port.
After loading the bootloader in IDA, some prompt strings such as Usage error,
please try %s-help lead us to the code for the recovery mode. During the analysis of
firmware recovering routines, we confirmed that the entire operating system com-
pressed in a special region of flash is also a piece of the firmware package.
Therefore, the decompressed operating system as well as applications were

732 M. Liu et al.

Fig. 1. Jumper Wires connect to UART pins of AR9331

Table 2. Vendor feature and size of customized code for each device.

Device Feature Unpacked firmware size Vendor customized
code
WR740 Firmware verification 2.4M (3868 functions) 83 functions
WR740 Packet forwarding 2.4M (3868 functions) 46 functions
Thunder Upload statistic 54.6M 3.9M shared library
reporting
A850R User authentication 29.1M 476K executable file
WebCam | Video encryption 33.3M 272K executable file
HGU421 User authentication No firmware package 836K executable file
obtained

obtained. Then, we tried to figure out whether the device is able to verify the
validity of an uploaded firmware package. We locate this feature by searching the
URL for upgrading page in the HTTP. This helped us pinpoint the logic of
upgrading and confirmed the missing of firmware integrity check.

For Thunder, we focused on the implementation of its unique upload statistic
reporting functionality, which is directly related to user’s reward. We found a dcdn
client process is listening to one particular port (4693), and more than 10 different
IP addresses are connected to that port. We also found in this process a library
libdcdn client.so is loaded. Searching for meaningful names in symbol tables, five
potential relevant functions were located.

For TOTOLINK A850R, we aimed to find executables related to user authentication.
We first statically disassembled every binary code file on the device to determine
which one is the web server. After the code reverse engineering, we identify the file
with name ‘boa’ as the device’s web server. Therefore, the following in-depth
analysis could concentrate on this executable.

Our black-box analysis indicated that the Yi Smart Webcam encrypts the data before
sending it to the user’s mobile application. The very particular vendor feature we
concerned about is how the data is encrypted. The corresponding process was first
identified according to the network connection information. Then we obtained the
executable of the process and further searched for functions responsible for data

Security Analysis of Vendor Customized Code in Firmware 733

encryption. We found symbols for AES encryption function in wolfSSL library
occurred in the executable. This helped us narrow the assessment scope of exe-
cutable code to only one function.

— As mentioned before, the HGU421 modem sets a restricted privilege to its normal
user. The assessment of this device is therefore trying to find how the device
authenticate an user. Similar to the feature locating of TOTOLINK A850R, we used
the URL for login page as the indicator to search every executable. We found the
executable uhttpd as the corresponding file, and we could focus on analyzing the
handler for requesting to that page in this executable.

4.4 Security Assessment
In this section, we will demonstrate our concrete secure assessment for each device.

Device Modification. Among the five devices we analyzed, we found TP-LINK
WR740nv5 and Thunder Money Maker fail to check the integrity of the code. We
detail the vulnerability and related attack as follows.

TP-LINK We manually analyzed the routine for firmware verification in TPLINK
and obtained the exact format of firmware. According to our analysis, an MD5
checksum is contained in the header of the firmware package, the uploaded package
will be accepted only if the checksum of remaining data corresponds to the one in the
header. So the attacker can easily modify the package to inject some malicious code
into the firmware and then repack it. We also emulated the MDS5 hash function in the
unicorn engine [16], and the emulated code also executes correctly with correct result
returned. This means even if the checksum function is proprietary, the attacker can
simply reuse it to re-create a valid firmware package.

To demonstrate the effectiveness of the modification, we inject code into the
firmware’s packet forwarding routine to duplicate any packet to a specific host. This
malicious firmware leads the device to send the entire network traffic to a malicious
server, which proves the threat of the firmware modification attack.

Thunder. As the major functionality of this device, the file uploading and its corre-
sponding CDN protocol of Thunder Money Maker is very complex, and the com-
munication between account server and the device is encrypted by an unknown
encryption algorithm. However, we conduct a device firmware modification attack to
circumvent the encryption. We directly reverse engineer the ‘libdcdn client.so’ file,
which is responsible for D-CDN function in this device. By searching for meaningful
names in exported symbols, we can locate five potential relevant functions. After a
manual analysis, how each function returns statistical data (i.e., in return value,
arguments or global variables) is understood. Then we modify each function to report a
tampered statistical data, uploaded it to the server to replace the original one and check
whether the uploading speed shown in the mobile application is changed. Through this
testing we pinpoint the specific function for accounting. By maliciously adjusting the
upload speed of this function, we can cheat the server to earn much more money than
what we should deserve.

734 M. Liu et al.

Corrupted Authentication

A850R We extract the binary file of the web server, Boa, in the squashfs filesystem of
A850R. The handle for login request is located by searching login path
‘boafrm/formLogin’. The handle contains only 172 assembly instructions, so it’s easy
to recover its logic. Instead of keeping sessions for login users, Boa stores the user’s IP
into the management information base (MIB) as an item ‘LoginIP’. Different from
normal session management, this mechanism in web server has two problems:

1. Any clients behind a NAT box in LAN will share same address connecting to the
router, which means privilege will be leaked to the whole subnet if one user logins
to the HTTP interface.

2. An attacker in LAN may simply discover and gain the authorized IP address by
ARP spoofing.

List 1.1 Authentication Code in A850R

bool check_login(input_user, input_pass)

{

char user[16], pass[16];

char user0[16], pass0[16];

load_from_mib (USERNAME, user) ;

load_from_mib (PASSWORD, pass) ;

//load_from_mib (SUPER_-USER, wuser0);

//load_from_mib (SUPER_PASS, pass0);

if (0==strcmp(input_user , user) && O==strcmp(input_pass,
pass))

return true;

}
if (0==strcmp(input_user, user0) && O==strcmp (input_pass,
pass0))

return true;

}

return false;

We find that, request not from “loginIP” will also be allow to access the man-
agement interface, if correct username and password are provided in ‘Authentication’
header of HTTP request. There is another vulnerability in the routine to check
‘Authentication’ header which is shown in List 1.1. To check the validity of
‘Authentication’ header, the web server allocates two pairs of username and password
on the stack. One is filled with the actual user’s information, which is loaded from
MIB, while the other is left to be uninitialized. Then the server compares the user’s
input with these two pairs of information, authorizing the user if either of the infor-
mation is matched. Since both of the uninitialized stack strings may be empty, it is
possible for attacker to bypass the authentication with an empty username and

Security Analysis of Vendor Customized Code in Firmware 735

password. What make things worse is that the CPU of A850R is a big-endian archi-
tecture. The most significant byte of a word is often zero, if the word is a small interger,
pointer to static array, or return address to some position to the code section. This
makes the success rate of the attack much higher, comparing with same attack against
little-endian architecture. To figure out the success rate of an attacker, we employ 10
malicious attempts, and all of them succeed.

To further derive how this issue has been introduced, we intended to also compare
an old version of the firmware for A850R. We found no old version firmware of
AS850R on the Internet, so we take an old version of N301RT to compare. We find that
the authentication process is very similar to that of AR850, but the uninitialized
variables are initialized as SUPERUSER and SUPERPASS in MIB.

Camera Vendor User
Server MobileApp
boot
started

bind to 4 specific device

Generate a random secret
KEY for binding

Send KEY

Send KEY

store KEY in a file

Ask to start capture video

Ask to tansfer video

Encrypt¢d video stream

Fig. 2. Xiaoyi key agreement

Thus, we can confirm that it is the incomplete patching procedure that causes this
issue.

HGU421 Our analysis of the uhttpd executable suggests a DoS vulnerability in this
device. The vendor implements the parser (shown in List 1.2) for HTTP header of basic
access authentication [17], which separates the username and password with a colon in
a base64-encoded HTTP header. After a call to strchr(header,’:’), the web server does
not check whether the return value is NULL or not (i.e., whether a colon exists). Then
the server uses the return value to separate the authentication info. As a consequence,
an attacker may send a crafted request to crash the web server.

736 M. Liu et al.

List 1.2 Authentication Code in HGU421

bool check_auth_header (char * header)

{

char *user, *pass;

base64decode (header) ;

user = header;

pass = strchr (header, ’:’);

pass [0] = ’\0’;

pass ++;

return check_user_info (user, pass);

Insecure Protocol

Yi Smart WebCam We search any file that contains keywords ‘encrypt’ in the jffs2
filesystem extracted from the firmware image. The executable binary named ‘remote’
has been noticed since it’s the only executable file containing AES related symbols
from WolfSSL. We confirm ‘remote’ is responsible for video capture and transfer,
because we also find symbols for video codec in this binary. Since this executable is
not large, we manual analyse it to recover the key agreement protocol (Fig. 2). Our
future analysis discovers at least two issues in Yi Smart Camera:

1. The vendor only encryption the first two blocks of each video stream using
AES-128 with ECB mode. It seems that to make the encrypt/decrypt faster on a tiny
embedded device as well as on a mobile device, the vendor abandons a standard
encrypt procedure. This allows a Man-In-The-Middle attack to decode most of the
video stream.

2. The key agreement of the video transmission protocol contains serious problem.
Since a secret key needs to be shared between the camera and mobile application,
the key is first generated by the vendor’s server and is transferred to both the mobile
application and the device after a binding operation. However, the camera launches
a special daemon service that listens to a TCP port (38888), and echoes this session
key if received arbitrary request. Then any attacker captured the encrypted stream
can also get the secret key via this TCP port. It seems that this port is used to debug,
but the vendor forgets to remove before releasing the device.

5 Related Work

5.1 Static Binary Code Analysis

Disassembler is required for most binary code analyses. Due to the complexity and
diversity of different instruction sets, many disassembly engines (udis86, diStorm3,
etc.) can only support i386/x86-64 architecture and is not feasible for embedded system
analysis. IDA is the state-of-the-art universal disassembler for most of processors.
Many previous cross-architecture works [18, 19] are based IDA’s disassembly result.

Security Analysis of Vendor Customized Code in Firmware 737

However, to acquire a precise analysis result, the disassembling of IDA involves many
interactive processes, which requires the participation of expertise. Capstone is another
multi-platform, multi-architecture disassembly framework that supports ARM,
ARMO64, MIPS etc. But some frequently used instruction sets such as MSP430, 8051
and AVR, are still not supported.

5.2 Dynamic Binary Code Analysis

To perform dynamic analysis, analyst may execute programs in a firmware with an
emulated environment. As common emulators contain no peripheral details, previous
works [20-22] try to fully or approximately emulate those peripherals. Those solutions
face different problems such as short of documentation or misbehavior of the emulated
code. Avatar [23] is another platform that is able to connect emulated code with
physical device to achieve a fully emulated environment, but until now it’s not publicly
released. For Linux-based firmware, although full system emulation is not possible, the
file system in the firmware can be mounted and programs could be emulated. Cui et al.
[9] run startup script in an alternative Linux system to emulate a running system.
Meanwhile, executing an emulated process in QEMU user mode is also an alternative
way. Those techniques are suitable for Linux based firmware in our practice. Even
though, missing MTD devcie in file system, User Defined Instructions in MIPS, or any
differences between emulated and real environment may also cause problems.

5.3 Heavyweight Program Analysis

Dynamic taint analysis and dynamic symbolic execution are prevalent dynamic anal-
ysis techniques for program analysis of desktop or mobile platform. However, most
tainting and symbolic execution engines aiming for x86, ARM or JVM cannot be
adapted to MIPS or other instruction sets used by embedded devices. Also, those
emulating based engines are limited by the restriction of emulators, which we have
mentioned before. The gap between concrete values needed by those engines and
incompleteness of emulation or debugging environment is still unbridgeable now.

Static taint analysis and symbolic execution benefit from the property of not relying
on runtime concrete value, and make significant uses in firmware analysis. Neverthe-
less, large scale taint analysis and symbolic execution encounters many issues such as
path explosion, low speed of constraint solvers, difficulties for pointer identification.
Project angr [24] fulfill the requirements that solving a combination of path and input
data from a start point to trigger some target, or collecting possible behaviors for further
manual analysis starting from a critical point. But its usage scenarios are very limited
because of the overhead.

5.4 Automatic Firmware Analysis

Many works have been done on automatic firmware analyzing. Some work are scalable
but perform no in-deepth analysis. A. Costin [1] scan in thousands of firmware images

738 M. Liu et al.

for specific artifacts with known problems. FIRMADYNE [25] run startup script of the
firmware filesystem, in a emulated Linux system with NVRAM shared-library replaced.
FIRMADYNE also find known by executing exploits from Metaspolit Framework.
There are some automatic techniques have been presented to discover unknown vul-
nerabilities. Firmalice [26] utilizes a symbolic model of authentication bypass flaws to
determine the required inputs to perform privileged operations. FIE [27] developed a
symbolic engine to find memory-safety bugs in MSP430 open-source softwares.

6 Conclusion

As the embedded devices are becoming more and more complex, state-of-the-art
security analysis techniques and tools are not adequate to address real-world analysis
tasks. In this paper we systematically study the limitation of embedded device ana-
lyzing tools and inefficiency of automatic analysis for embedded devices. We argue
that current techniques and tools are still not universal for automatic security assess-
ment, and currently we should still acknowledge the necessity of manual intervention
for an effective assessment. We then suggest a practical and comprehend security
assessment procedure that focuses on common weak points of embedded design and
implementation. Guide by this assessment procedure, we reveal critical security flaws
in five real-world devices.

References

1. Costin, A., Zaddach, J. Francillon, A., Balzarotti, D., Antipolis, S.: A large scale analysis of
the security of embedded firmwares. USENIX Security. USENIX Association (2014)

2. Cui, A., Stolfo, S.: Print me if you dare: firmware modification attacks and the rise of printer
malware (2011)

3. Goodspeed, T., Francillon, A.: Half-blind attacks: mask rom bootloaders are dangerous. In:
Proceedings of the 3rd USENIX Conference on Offensive Technologies, p. 6. USENIX
Association (2009)

4. Heftner, C.: Binwalk-firmware analysis tool. https://code.google.com/p/binwalk/

5. Cui, A., Costello, M., Stolfo, S.J.: When firmware modifications attack: a case study of
embedded exploitation. In: NDSS (2013)

6. Hemel, A., Kalleberg, K.T., Vermaas, R., Dolstra, E.: Finding software license violations
through binary code clone detection. In: Proceedings of the 8th Working Conference on
Mining Software Repositories, pp. 63—72. ACM (2011)

7. Ji, J.-H., Woo, G., Park, H.-B., Park, J.-S.: Design and implementation of retargetable
software debugger based on gdb. In: Third International Conference on Convergence and
Hybrid Information Technology, ICCIT 2008, vol. 1, pp. 737-740. IEEE (2008)

8. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX Annual Technical
Conference, FREENIX Track, pp. 41-46 (2005)

9. Costin, A., Zarras, A., Francillon, A.: Automated dynamic firmware analysis at scale: a case
study on embedded web interfaces. arXiv preprint arXiv:1511.03609 (2015)

https://code.google.com/p/binwalk/
http://arxiv.org/abs/1511.03609

10.

11.

12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Security Analysis of Vendor Customized Code in Firmware 739

Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of cryptographic
misuse in android applications. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, pp. 73-84. ACM (2013)

A vulnerability and a hidden admin account all inside sitel dsll4w routers! https:/
rootatnasro.wordpress.com/2015/01/04/a-vulnerability-anda-hidden-admin-account-all-
inside-sitel-ds114-w-routers/

More than 60 undisclosed vulnerabilities affect 22 soho routers. http:/seclists.org/
fulldisclosure/2015/May/129

Cve-2015-3864. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3864
Cve-2014-7169. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2014-7169

Ar9331 highly-integrated and cost effective ieee 802.11n 1x1 2.4 ghz soc for ap and router
platforms. https://www.openhacks.com/uploadsproductos/ar9331datasheet.pdf

Quynh, N.A., Dang, H.-V.: Unicorn: next generation cpu emulator frame-work. In: BlackHat
(2015)

Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., Stewart,
L.: Rfc 2617: Http authentication: basic and digest access authentication. Internet RFCs
(1999)

Pewny, J., Garmany, B., Gawlik, R., Rossow, C., Holz, T.: Cross-architecture bug search in
binary executables (2015)

Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.: Byteweight: learning to recognize
functions in binary code. In: USENIX Security Symposium (2014)

Chipounov, V., Candea, G.: Reverse engineering of binary device drivers with revnic. In:
Proceedings of the 5th European Conference on Computer Systems, pp. 167-180. ACM
(2010)

Kuznetsov, V., Chipounov, V., Candea, G.: Testing closed-source binary device drivers with
ddt. In: USENIX Annual Technical Conference, no. EPFL-CONF- 147243 (2010)
Schlich, B.: Model checking of software for microcontrollers. ACM Trans. Embed. Comput.
Syst. (TECS) 9(4), 36 (2010)

Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D.: Avatar: a framework to support
dynamic security analysis of embedded systems firmwares. In: Symposium on Network and
Distributed System Security (NDSS) (2014)

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A., Grosen, J.,
Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SoK: (State of) the art of war: offensive
techniques in binary analysis. In: IEEE Symposium on Security and Privacy (2016)

Chen, D.D., Egele, M., Woo, M., Brumley, D.: Towards automated dynamic analysis for
linux-based embedded firmware. In: ISOC Network and Distributed System Security
Symposium (NDSS) (2016)

Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice- automatic
detection of authentication bypass vulnerabilities in binary firmware. In: NDSS (2015)
Davidson, D., Moench, B., Ristenpart, T., Jha, S.: Fie on firmware: finding vulnerabilities in
embedded systems using symbolic execution. Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 2013), pp. 463-478 (2013)

https://rootatnasro.wordpress.com/2015/01/04/a-vulnerability-anda-hidden-admin-account-all-inside-sitel-ds114-w-routers/
https://rootatnasro.wordpress.com/2015/01/04/a-vulnerability-anda-hidden-admin-account-all-inside-sitel-ds114-w-routers/
https://rootatnasro.wordpress.com/2015/01/04/a-vulnerability-anda-hidden-admin-account-all-inside-sitel-ds114-w-routers/
http://seclists.org/fulldisclosure/2015/May/129
http://seclists.org/fulldisclosure/2015/May/129
https://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2015-3864
https://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2014-7169
https://www.openhacks.com/uploadsproductos/ar9331datasheet.pdf

	Security Analysis of Vendor Customized Code in Firmware of Embedded Device
	Abstract
	1 Introduction
	2 Issues of Firmware Analysis
	2.1 Firmware Acquiring
	2.2 Firmware Unpacking
	2.3 Code Debugging
	2.4 Code Emulation

	3 Vendor Customized Code Analysis
	3.1 Target
	3.2 Searching Vendor Customized Code
	3.3 Security Assessment of Vendor Customized Code

	4 Experimental Evaluation
	4.1 General Analysis
	4.2 Firmware Analysis
	4.3 Vendor Customized Code Searching
	4.4 Security Assessment

	5 Related Work
	5.1 Static Binary Code Analysis
	5.2 Dynamic Binary Code Analysis
	5.3 Heavyweight Program Analysis
	5.4 Automatic Firmware Analysis

	6 Conclusion
	References

