
Automatic Detection and Analysis
of Encrypted Messages in Malware

Ruoxu Zhao(B), Dawu Gu, Juanru Li, and Yuanyuan Zhang

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

zhaoruoxu@gmail.com, dwgu@sjtu.edu.cn

Abstract. Encryption is increasingly used in network communications,
especially by malicious software (malware) to hide its malicious activi-
ties and protect itself from being detected or analyzed. Understanding
malware’s encryption schemes helps researchers better analyze its net-
work protocol, and then derive the internal structure of the malware.
However, current techniques of encrypted protocol analysis have a lot of
limitations. For example, they usually require the encryption part being
separated from message processing which is hardly satisfied in today’s
malware, and they cannot provide detailed information about the encryp-
tion parameter such as the algorithm used and its secret key. Therefore,
these techniques cannot fulfill the needs of today’s malware analysis.

In this paper, we propose a novel and enhanced approach to auto-
matically detect and analyze encryption and encoding functions within
network applications. Utilizing dynamic taint analysis and data pattern
analysis, we are able to detect encryption, encoding and checksum rou-
tines within the normal processing of protocol messages without prior
knowledge of the protocol, and provide detailed information about its
encryption scheme, including the algorithms used, secret keys, cipher-
text and plaintext. We can also detect private or custom encryption
routines made by malware authors, which can be used as signature of
the malware. We evaluate our method with several malware samples to
demonstrate its effectiveness.

Keywords: Network protocols · Encryption detection · Data analysis ·
Reverse engineering

1 Introduction

Today protocol reverse engineering is widely used in many security applications,
especially in malware detection and analysis. To fully understand the intention
and behavior of malware, security analysts usually have to obtain detailed net-
work protocol information. However, current circumstance of the wider use of

Supported by the National Science and Technology Major Projects (Grant
No.: 2012ZX03002011-002), the National Key Technology R&D Program
(2012BAH426B02) and NSFC under Grant No. 61103040.

c© Springer International Publishing Switzerland 2014
D. Lin et al. (Eds.): Inscrypt 2013, LNCS 8567, pp. 101–117, 2014.
DOI: 10.1007/978-3-319-12087-4 7



102 R. Zhao et al.

sophisticated encryption schemes in malware’s network communication renders
it very difficult to analyze the protocol directly. Several techniques were pro-
posed to solve this problem [3,15,19], however these techniques have several
critical weaknesses which make them inadequate in the analysis of current mal-
ware. First, these techniques usually require encryption or decryption to be in
a separated phase from normal processing of protocol messages. This condition
is hardly satisfied in today’s malware, which usually uses several layers of dif-
ferent encryption or encoding schemes. Second, they usually detect encryption
routines by the ratio of bitwise or arithmetic instructions. This condition also
cannot be met when malware uses weaker but simpler encoding scheme instead
of encryption, or with the existence of obfuscation. And third, these techniques
only detect the existence of encryption routines but not the parameters such
as the secret key. The lack of this information makes it very difficult to give a
comprehensive view of the malware’s internal structure.

We propose an in-depth approach to detect and analyze the encryption,
encoding and checksum routines within a program using dynamic taint analysis
[16] and dynamic data pattern analysis [23], and then uncover the complete struc-
ture of malware’s protocol messages. First we construct the hierarchical structure
of a protocol message using its procedure-level execution context. Then, we per-
form dynamic taint analysis on the possible procedures to discover encryption
and encoding routines. After that, dynamic data pattern analysis is used to
reveal the parameters of encryption or decryption, and to produce possible sub-
messages. At last, we reconstruct sub-messages to the original protocol message
to provide comprehensive analysis result of encrypted protocol content.

Some of our contributions are listed below.

– We use dynamic taint analysis as the primary tool to locate encryption or
encoding within the message processing, eliminating the former requirement of
the separation of encryption and message processing. We also propose methods
to distinguish different layers of encryption, revealing the internal structure
of encrypted message.

– Dynamic data pattern analysis is used to extract the high-value parameters
of encryption, including the algorithm used, secret keys, ciphertext, plaintext,
etc. This information is valuable to security analysts, and can be used as
signature to malware detection and classification.

– We provide methods to detect non-public or custom made encryption or
encoding routines used in malware’s protocols automatically, with no prior
knowledge of the malware. Some of the parameters used in custom algorithms
can be extracted at the same time.

– We use entropy metrics and data characteristics as powerful supplements
to distinguish encryption routines (focusing on confusion and diffusion) and
encoding routines (focusing on transformation). The entropy metrics provide
a convenient way to discover the underlying nature of detected algorithm.

– We evaluate our method with custom programs as well as several real world
malware samples to show the effectiveness of our approach, including ZeuS
P2P botnet, Mega-D botnet, Storm botnet, etc.



Automatic Detection and Analysis of Encrypted Messages in Malware 103

2 Background and Related Work

Protocol reverse engineering has gained significant attention in recent years.
Polyglot [4] took the first step to automatically reverse engineer the message for-
mat using dynamic program analysis techniques. Utilizing dynamic taint analy-
sis, it can discover different kinds of message fields such as direction fields and
keywords. AutoFormat [14] took a step further to detect the structural infor-
mation about protocol messages. The work by Wondracek et al. [20] combined
multiple messages together to deduce the internal structure of messages. All
these approaches worked on plain unencrypted messages. There are other sys-
tems [6,7] proposed to automatically infer the protocol state machine using pro-
gram analysis techniques. The first effort to reverse engineer encrypted protocol
content automatically was made by the system ReFormat [19], and then Dis-
patcher [3]. They took similar approaches with the assumption of the separation
of decryption and message processing, and used instruction characteristics to
detect the decryption function. The lack of flexibility and detailed information
about cryptographic parameters limited their usages. There are other approaches
[8,17,18] that used network traces to analyze protocols. These approaches are
mostly probabilistic and require prior knowledge about the protocol, which are
less accurate than the program analysis based approaches.

Automatic detection and analysis of cryptographic algorithms is also a hot
topic of security research in recent years. Gröbert’s work [11] took the first
step to detect cryptographic primitives in software using dynamic data analysis
techniques. Zhao et al. [22,23] extended this work using dynamic data pattern
analysis, which is more effective and accurate. The system Aligot [5] focused on
detecting cryptographic algorithms in obfuscated software using loop detection
techniques. CipherXRay [13] used the avalanche effect of cryptographic algo-
rithms and dynamic taint analysis to detect the input-output dependency of
cryptographic algorithms.

In this paper, we combine protocol reverse engineering techniques with cryp-
tographic algorithm detection techniques to provide in-depth and comprehen-
sive detection and analysis of encrypted protocol messages. We also extend the
cryptographic algorithm detection to encoding functions and propose informa-
tion entropy based metrics to distinguish encryption and encoding functions.
Our approach requires no prior knowledge of the protocol or the algorithms,
and tries to detect generic patterns and reveal complete structures of encrypted
messages.

3 System Description

3.1 System Overview

Our system is designed to automatically extract the detailed internal structure
and data protection schemes of an encrypted protocol message. Given a sample
of a program, our system runs it within the execution monitor, and outputs



104 R. Zhao et al.

the complete structure of encrypted network messages, with detailed informa-
tion about its encryption, hashing and checksums used in different layers of the
processing of the message. To achieve this goal, our system takes the follow-
ing steps: (a) Run the program in the execution monitor (emulator) and obtain
runtime traces containing low-level context data. (b) Upon receiving a message,
our system analyzes the procedure call hierarchy and the message structure. (c)
Analyze possible encryption (or decryption), encoding (or decoding) and check-
sum routines with the message processing. The decrypted (or decoded) data is
extracted as sub-messages. (d) We continue step (b) on all sub-messages and sub-
sequent messages until the analysis is complete, and output all analysis result.
An overview of the architecture of our system is shown in Fig. 1.

Execu on 
Monitor

Program
Sample

Procedure 
Call Hierarchy

Message 
Structure 

Constructor

Taint Analysis 
Engine

Data Pa ern 
Analysis 
Engine

Algorithm Analyzer

Sub-message 
Reconstructor

Analysis 
Result

Fig. 1. System architecture

Dynamic Execution Monitoring. In order to obtain program runtime data,
the program to be analyzed is run in a formerly available program emulation sys-
tem [22]. Fine-grained information, including CPU instructions, register values,
memory accesses and parameters of system API calls, can be visited conve-
niently. All networking APIs are hooked to notify our system when a network
message is received, including the message data and context information. All
subsequent processing of the message is monitored by our system to analyze
possibly encrypted message content. The analysis and program execution are
done simultaneously for better performance.

3.2 Message Structure Inference

The first step during analysis is to construct the internal hierarchical structure of
a message into a tree structure. The message tree is later used to reconstruct the
meaningful hierarchy of an encrypted message and its sub-messages. To achieve
this, our system is based on the simple observation: Most functionality units of a
program are implemented as procedures, especially encryption routines, hashing
routines and checksums. This fact accords with the software engineering principle
of modularized design, and is common in today’s software even in malware.

During program execution, our message structure analyzer maintains a vir-
tual call stack to track current procedure call hierarchy. Whenever message data
is accessed (to byte granularity), we record its call stack context, and append it



Automatic Detection and Analysis of Encrypted Messages in Malware 105

Fig. 2. A sample message tree

to the message tree properly. All message data with the same context are merged
in the final tree. A sample of constructed message tree is shown in Fig. 2.

The sole purpose of message structure reconstruction is for the reconstruction
of decrypted or decoded sub-messages. We can also analyze message field format
in this step, which has been extensively studied [3,4,9,14,20]. So here we omit
the analysis of message field format and focus on encrypted data.

3.3 Data-Oriented Analysis and Algorithm Detection

After the inference of message structure, we conduct data-oriented analysis on
each of the possible procedures. The data analysis mainly includes dynamic data
taint analysis for the detection of data dependency, and dynamic data pattern
analysis for the detection of specific algorithms. We’ll discuss this in detail in
Sect. 4.

3.4 Sub-message Generation

A sub-message is an encrypted or encoded partial message which is embedded
within its parent message. A sub-message often indicates a new layer of the orig-
inal message, which usually has different semantic meanings and is processed
in different routines. After each successful detection of an algorithm in the pre-
vious step, we spot the beginning of a sub-message starting at the completion
point of the algorithm. We then analyze the sub-message recursively until all
sub-messages are detected and analyzed.

3.5 Message Reconstruction

Upon the completion of analysis of each sub-message, we discard the original
analysis of the sub-message in its parent message and append the newly gener-
ated sub-message. The final result is a tree-like structure where all layers of the
processing of the original message and the conversions of message data are clear
to analysts. Examples of our final result are shown in Sect. 5.



106 R. Zhao et al.

4 Data Dependency and Data Pattern Analysis

On acquiring the procedure call hierarchy, we are able to conduct data flow
analysis on each of the procedure call that possibly contains encryption, encoding
or checksum. For any deterministic algorithm, we argue that the relationship
between its input and output data is uniquely decided, which means the output
of an algorithm is predetermined for any fixed input data. This is the key concept
in the whole analysis phase.

For each trace of procedure call, we conduct dynamic taint analysis first to
test if the input-output data dependency satisfies the characteristics of a certain
algorithm. We use every byte of the received message as the taint source, and
track the flow of the message in each procedure. For those whose output data is
tainted, we perform further analysis on it to test if a specific algorithm exists.
This approach has the limitation that not all input parameters of an algorithm
can be tainted in the same procedure. This limitation can be resolved using
dynamic data pattern analysis.

To certify the existence of an algorithm, we conduct dynamic data pattern
analysis on selected procedures. For each procedure, all possible combinations of
input and output data are iterated to see if the data pattern is satisfied. In the
meantime, the parameters of an algorithm can be extracted as side products.
We further discuss the analysis details using these techniques for different kinds
of algorithms.

4.1 Detecting Block Ciphers

For block ciphers, we use the avalanche effect as theoretical basis for our analysis.
The avalanche effect says that flipping a single bit in input results in about half
of the output bits being flipped in a well-designed block cipher. In fact, if we
consider the situation for each byte, the possibility of an output byte not being
affected by any one of the input byte is so low that it cannot happen in one
experiment, even for a short 64-bit block [13]. Hence, we argue that every byte
in the output data of a block cipher is dependent on every byte of its input
data. Dynamic taint analysis is just the right tool to detect this dependency.
Whenever we found a block of output data being completely tainted by a block
of input data, we further analyze this block using data pattern analysis to verify.
A demonstration of the data dependency of block ciphers is shown in Fig. 3.

Key Scheduling. Before actual encryption of a block cipher, a program must
perform key scheduling first to generate the sub-keys. In most of the malware,
the secret key is embedded in its binary, thus won’t be tainted in procedure
input. We use the strategy of retainting the input using some special taint tags,
and test if every byte of the possible sub-key is tainted by a subset of input key.
Then data pattern analysis is performed to verify its belonging to an algorithm.



Automatic Detection and Analysis of Encrypted Messages in Malware 107

Tag 0 Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7

Tag 0-7 Tag 0-7 Tag 0-7 Tag 0-7 Tag 0-7 Tag 0-7 Tag 0-7 Tag 0-7

8-byte Input Block, taint tag 0-7 in each byte

8-byte Output Block, taint tag 0-7 in all bytes

Fig. 3. Block cipher data dependency

Modes of Operation. With the power of taint analysis and data pattern
analysis, detecting modes of operation of block ciphers is fairly straightforward.
We demonstrate how some of modes of operation is detected.

Electronic Codebook (ECB). There’s no initialization vector (IV) in ECB
mode, so it can be detected using taint analysis only.

Cipher-Block Chaining (CBC). In CBC mode, the IV is first XORed with
plaintext, and then encrypted to produce the ciphertext. We first detect the
block encryption and get the actual input, which is the XORed result. We
then perform XOR with the tainted message input, and get the IV used in
encryption.

Cipher Feedback (CFB) and Output Feedback (OFB). In CFB and OFB
mode, the IV is encrypted and then XORed with the plaintext to produce the
ciphertext. For most of the malware implementations, the IV is embedded in
the malware’s binary, just like the secret key. So we detect the IV first using
data pattern analysis in the first block, and detect subsequent encryptions
using taint analysis.

Counter (CTR). In CTR mode, each block input can be untainted in our
analysis, so we detect all blocks using data pattern analysis.

4.2 Detecting Stream Ciphers

Most stream ciphers don’t have a strong data dependency like the block ciphers.
The plaintext of stream ciphers is usually XORed with some value to produce the
ciphertext. Hence, each byte of the ciphertext of stream ciphers must be tainted
by at least the corresponding byte in plaintext. We then use data pattern analysis
to verify the data dependency.

Key Scheduling. Stream ciphers like RC4 may also have a key scheduling
process. This process is actually quite similar to the key scheduling of block
ciphers where each byte of the scheduled key is tainted by a part of the secret
key. As most of the secret keys are untainted in our analysis, we also detect them
using data pattern analysis (Fig. 4).



108 R. Zhao et al.

Tag 0 Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7

8-byte Input Block, taint tag 0-7 in each byte

8-byte Output Block, taint tag 0-7 in each corresponding byte

Tag 0 Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7

Fig. 4. Stream cipher data dependency

4.3 Detecting Hash Functions

Like block ciphers, well designed hash functions also have the property of the
avalanche effect. Unlike block ciphers, they produce the same length of output
regardless of the length of their input. The strong data dependency is a notable
signature of hash functions. We take similar approaches as before to detect hash
functions.

4.4 Detecting Encoding Functions

The encoding functions we refer to are used to transform data into another
format for network transmission, such as the widely used Base64. They don’t
have cryptographic characteristics and their encoded message can be decoded
easily. However, they still remain some weak data dependency which is similar to
stream ciphers, and can be used as a signature to detect these functions. Some
of the encoding functions produce different length of output to the input, so we
modify the method used in stream ciphers to handle variable length of output
data.

Some of the malware authors don’t care much about the security of their
encryption functions, and just use a simpler encoding scheme instead. However,
this approach is usually good enough to bypass most of the intrusion detection
systems or black-box analysis [10]. We further describe this situation in Sect. 4.6.

4.5 Detecting Checksums

Malware usually uses checksums to detect errors or modifications of network
data. Unlike hash functions, checksums usually have a small length and can
be easily forged. Most of the checksums don’t exceed 32-bit, and can fit into
a register of x86 CPUs. Therefore, we detect checksum routines using register
values as well as memory data, to see if a small-size datum is dependent on the
whole input block. Data pattern analysis includes common checksum algorithms
like CRC-32, Alder-32, bitwise XOR and arithmetic sum.



Automatic Detection and Analysis of Encrypted Messages in Malware 109

4.6 Inferring Private Algorithms

Apart from using standard algorithms, many malware authors choose to use
custom or modified algorithms to avoid detection. Doing so further increases the
difficult to reverse engineer the malware samples or to analyze network traffic.
It’s of great importance to detect these kinds of algorithms, since they provide
valuable information to security analysts. Here we discuss the techniques we use
to detect custom or private encryption and encoding algorithms.

Although the details of private algorithms remain unknown prior to our
analysis, they do exhibit many of the features of standard algorithms mentioned
earlier. We still use data analysis techniques as weapons to uncover the nature
of these algorithms. Since many of the details are unavailable to our analysis, we
have to introduce extra techniques to extract them. We introduce information
entropy based metrics for algorithm classification, and discuss in detail about
the detection of each kind of algorithms.

Entropy Metrics. In information theory, entropy is used to quantify the
expected value of the information contained in a message. We use Shannon
entropy here for the measurement of the randomness of data. Given a block of
binary data d(length n > 0), and ci(0 ≤ i < 256) denoting the total occurrences
of byte i in d, we defined the normalized entropy H(d) as:

H(d) = −
∑255

i=0
ci
n log2

ci
n

log2 n
(0 < H(d) ≤ 1)

Unencrypted messages or texts usually have a low H(d) value, yet encrypted
binary data tends to have a high (nearly 1) H(d) value. In this way, we further
define the quotient of the entropy of the output data do and the input data di
for a procedure trace p as:

Q(p) =
H(do)
H(di)

For short messages, the H(d) or Q(p) value may not be meaningful, as infor-
mation entropy is a statistical concept. However, our experiments suggest that
for medium length (tens or hundreds of bytes) messages, the H(d) and Q(p)
value can be used to measure the randomness indeed. We’ll discuss the usages
of entropy metrics below, and show our experiment results in Sect. 5.

Block Ciphers. For the detection of private block ciphers, we use taint analy-
sis to discover the data dependency. The key scheduling and modes of operation
(other than ECB), however, cannot be easily detected because of the unavailabil-
ity of data pattern analysis. For most of block cipher decryptions, the Q value
is usually below 0.8, which is the lowest among all kinds of algorithms.



110 R. Zhao et al.

Stream Ciphers and Encoding Functions. Private stream ciphers and
encoding functions exhibit almost the same features in our analysis, as they all
show byte-to-byte mapping in our data dependency analysis. The first difference
is that encoding (or decoding) functions may have input and output data with
different lengths, yet in stream ciphers the length is always the same. Another
difference is that the Q value of stream ciphers is generally lower than encoding
functions. We use an empirical Q value of 0.9 as the boundary, where procedures
of Q below 0.9 as stream ciphers and above as encoding functions.

Many malware authors use XOR-based encryption schemes. There are mainly
two kinds of XOR-based encryptions: one is chained-XOR, where each byte is
XORed with previous value to get the encrypted byte; the other one is keyed-
XOR, where each byte is XORed with a short custom-scheduled key (similar to
RC4). In our analysis, we treat the chained-XOR as encoding, whereas the keyed-
XOR as encryption, which is supported by the experiment results of entropy
metrics.

Hash Functions and Checksums. Hash functions have very distinguishable
data characteristics. They have a strong data dependency, and their Q value
is usually above 1.1. Checksum routines share the data characteristics of hash
functions, except that their output is too short for entropy metrics.

5 Implementation and Evaluation

We implemented our system as a plugin module of the LochsEmu emulator
[21,22], which can be used to analyze 32-bit Windows programs. This infrastruc-
ture enables us to conduct efficient and convenient data-oriented analysis. Other
available frontend options include QEMU [2] and PIN [1], but they usually
require tracing the intermediate result into hard disk first, which introduces
considerable performance deduction. We implemented the taint analysis engine,
the data pattern analysis engine and algorithm analyzers as loosely coupled sub-
modules with about 10k lines of C++ code.

We chose some custom made programs for test purposes, and some vari-
ants or self-compiled versions of real-world malware (botnet) for validation and
evaluation, including ZeuS P2P botnet, Mega-D, Storm, ZeroAccess, Festi and
Mariposa. Most of the test samples are botnet clients which have extensive net-
work communication. Our target algorithms include block cipher DES (ECB,
CBC and CFB modes), stream cipher RC4 and chained XOR, hash function
MD5, encoding function Base64 and checksum functions CRC32 and Alder32.
We also detect private or custom algorithms which we call generic symmetric
ciphers, generic stream ciphers and generic encoding/decoding algorithms. An
overview of our evaluation result is in Table 1.



Automatic Detection and Analysis of Encrypted Messages in Malware 111

Table 1. Evaluation result overview

Sample Result

Mega-D DES key schedule; DES-ECB decryption

ZeuS P2P Chained XOR; MD5; RC4 key schedule; RC4 decryption

Storm Generic decoding; Checksum (XOR 8-bit); Checksum (ADD 8-bit)

ZeroAccess Generic stream decryption; Checksum (CRC32)

Festi Generic stream decryption

Mariposa Generic stream decryption

Test Sample 1 DES key schedule; DES-CBC decryption; DES-CFB decryption

Test Sample 2 Base64 decoding

5.1 Entropy Metrics

We use entropy metrics for the distinguishing of encryption and encoding. The
Q values of the samples above are shown in Fig. 5.

Fig. 5. Values of Q function

There’s a huge gap between MD5 hash function and other algorithms because
MD5 acts like encryption which makes entropy higher, while others are decryp-
tion or decoding which reduces entropy. Generally, we treat procedures with Q >
1.1 as encryption functions or hash functions. We set the Q range 0.9 < Q ≤ 1.1
for encoding and decoding. All detected decoding routines fell into this range
with Q values near 1.0. All decryption routines met the condition that Q ≤ 0.9,
generally within the range from 0.75 to 0.85. These decryption routines include
both symmetric ciphers and stream ciphers.



112 R. Zhao et al.

5.2 Case Study

ZeuS P2P Botnet. The C2 message (type 0xCC) is the most complicated
encrypted message we analyzed. It contains three layers of encryption or encoding,
and two MD5 hash data blocks used as checksums. The layout of a ZeuS C2
message is shown in Fig. 6, and the complete structure of a ZeuS message is in
AppendixA.

Fig. 6. ZeuS message layout

The chained XOR algorithm is a fundamental algorithm used in ZeuS botnet,
and the outmost layer of every ZeuS message is encoded using chained XOR.
This algorithm uses a single fixed byte as initialization byte, and each byte is
XORed with the previous byte to get the encoded byte, as shown below.

void _visualEncrypt (void *buffer, DWORD size)
{

for (DWORD i = 1; i < size; i++)
((LPBYTE)buffer)[i] ^= ((LPBYTE)buffer)[i - 1];

}

The result of entropy metrics of the XOR algorithm shows that it’s more
of an encoding algorithm rather than encryption, which is predictable since
chained XOR only introduces very limited security. However, this simple scheme
is enough to evade most black-box network trace based analysis.

The C2 message also has a layer of RC4 encryption. It uses standard RC4
algorithm, and we’re able to successfully detect the RC4 key schedule as well
as the encryption. The Q function value of the RC4 procedure is about 0.85,
which is a little bit high for the reason that the decrypted message still contains
encoded binary data. Two MD5 hashes are used in the message to check the
message’s integrity. They’re both successfully detected and their occurrences are
linked with MD5’s output, shown in AppendixA.

With the information above, security analysts can easily grasp the high-level
structure of a large complicated message, and focus on an interesting point to
do further manual analysis. This information can also be used to study the
evolvement of a particular malware.



Automatic Detection and Analysis of Encrypted Messages in Malware 113

Fig. 7. The Mega-D message Fig. 8. The storm message

Mega-D Botnet. The Mega-D botnet uses DES-ECB encryption to protect its
network communication. A sample analysis result of Mega-D message is shown
in Fig. 7.

The Mega-D messages begin with a two-byte field specifying the number of
DES blocks. The example above shows that there’re 4 blocks in this message.
The decryption is detected including its secret key, ciphertext and plaintext. The
decrypted plaintext is further divided into several parts, and in this example they
indicate some ID fields.

One thing worth mentioning is that Mega-D encrypts its message with embed-
ded secret key ‘abcdefgh’, however the detected secret key is ‘abbddggh’. That’s
because ‘abbddggh’ is the parity-fixed value of ‘abcdefgh’, and obviously they
produce the same S-box for DES decryption after fixing parity.

Storm Botnet. The Storm botnet uses a encoding algorithm which is similar
to Base64 [12]. The plaintext is first padded and separated into 6-bit units and
then each unit is added with 0x21 to get the encoded byte. The decoded data
contains two bytes for checksum, one is 8-bit sum modulo 256 and the other is
8-bit bitwise XOR, as shown in Fig. 8.

ZeroAccess, Festi and Mariposa. The encryption schemes for these three
botnet samples are all custom XOR-based stream ciphers. ZeroAccess uses a
custom scheduled 256-byte S-box, which is similar to RC4. It also uses a CRC32
checksum within the decrypted message to validate integrity, shown in
Fig. 9.

Festi uses a 4-byte embedded key, and performs bitwise XOR of the plaintext
and the key every 4 bytes to get the ciphertext. Mariposa uses a 2-byte key
derived from the plaintext. It’s easy to see that these encryption algorithms are
not cryptographically secure, but very easy to implement and use. There’s really
no point in using the encryption algorithms that are proven to be secure under
the circumstance that the software binary can be obtained and analyzed, so this
kind of simple encryption schemes is widely used by malware authors.



114 R. Zhao et al.

Fig. 9. The ZeroAccess message

6 Conclusion

In this paper, we present a novel encrypted protocol analysis technique that can
be used to reveal the complicated encrypted message structure of today’s mal-
ware. We first infer the message structure using runtime context, and reconstruct
the message into a tree hierarchy. We then use data-oriented analysis techniques
including taint analysis and data pattern analysis to detect encryption, encoding
and checksum routines and extract possible sub-messages. At last, we analyze
recursively on all sub-messages to uncover the complete structure of an encrypted
message.

With the power of dynamic taint analysis and dynamic data pattern
analysis, we’re able to detect public encryption and encoding algorithms such
as DES, RC4 and Base64. We can also locate possible custom or private algo-
rithms, which are widely used by malware. The use of entropy metrics makes
it possible to find out the data characteristics and distinguish encryption and
encoding functions. We evaluate our technique using 6 malware samples as well
as some custom made test programs. The evaluation result shows that our tech-
nique is reliable and accurate to detect both public and private algorithms, and
to extract the complete structure of messages with complicated encryption and
encoding schemes.



Automatic Detection and Analysis of Encrypted Messages in Malware 115

A ZeuS Botnet Message Format

See Fig. 10.

Fig. 10. ZeuS message format

References

1. PIN - a dynamic binary instrumentation tool. http://software.intel.com/en-us/
articles/pin-a-dynamic-binary-instrumentation-tool

2. QEMU open source processor emulator. http://wiki.qemu.org/Main Page

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://wiki.qemu.org/Main_Page


116 R. Zhao et al.

3. Caballero, J., Poosankam, P., Kreibich, C., Song, D.: Dispatcher: enabling active
botnet infiltration using automatic protocol reverse-engineering. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security, pp. 621–
634. ACM (2009)

4. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: automatic extraction of pro-
tocol message format using dynamic binary analysis. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security, pp. 317–329. ACM
(2007)

5. Calvet, J., Fernandez, J.M., Marion, J.Y.: Aligot: cryptographic function identifi-
cation in obfuscated binary programs. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security, pp. 169–182. ACM (2012)

6. Cho, C.Y., Shin, E.C.R., Song, D., et al.: Inference and analysis of formal mod-
els of botnet command and control protocols. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, pp. 426–439. ACM (2010)

7. Comparetti, P.M., Wondracek, G., Kruegel, C., Kirda, E.: Prospex: protocol spec-
ification extraction. In: 2009 30th IEEE Symposium on Security and Privacy, pp.
110–125. IEEE (2009)

8. Cui, W., Kannan, J., Wang, H.J.: Discoverer: automatic protocol reverse engineer-
ing from network traces. In: Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, pp. 1–14 (2007)

9. Cui, W., Peinado, M., Chen, K., Wang, H.J., Irun-Briz, L.: Tupni: automatic
reverse engineering of input formats. In: Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security, pp. 391–402. ACM (2008)

10. Elisan, C.: The XOR bypass (2012). https://blog.damballa.com/archives/tag/
malware-dropper

11. Gröbert, F.: Automatic identification of cryptographic primitives in software.
Diploma thesis, Ruhr-University Bochum, Germany (2010)

12. Lee, C.P.: Framework for botnet emulation and analysis. ProQuest (2009)
13. Li, X., Wang, X., Chang, W.: CipherXRay: exposing cryptographic operations and

transient secrets from monitored binary execution (2012)
14. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic protocol format reverse engi-

neering through context-aware monitored execution. In: NDSS, vol. 8, pp. 1–15
(2008)

15. Lutz, N.: Towards revealing attackers intent by automatically decrypting network
traffic. Master’s thesis, ETH, Zürich, Switzerland, July 2008

16. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: NDSS (2005)

17. Rossow, C., Dietrich, C.J.: ProVeX: detecting botnets with encrypted command
and control channels. In: DIMVA (2013)

18. Wang, Y., Zhang, Z., Yao, D.D., Qu, B., Guo, L.: Inferring protocol state machine
from network traces: a probabilistic approach. In: Lopez, J., Tsudik, G. (eds.)
ACNS 2011. LNCS, vol. 6715, pp. 1–18. Springer, Heidelberg (2011)

19. Wang, Z., Jiang, X., Cui, W., Wang, X., Grace, M.: ReFormat: automatic reverse
engineering of encrypted messages. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 200–215. Springer, Heidelberg (2009)

20. Wondracek, G., Comparetti, P.M., Kruegel, C., Kirda, E., Anna, S.S.S.: Automatic
network protocol analysis. In: NDSS, vol. 8, pp. 1–14 (2008)

21. Zhao, R.: Lochsemu process emulator for windows x86. https://github.com/
zhaoruoxu/lochsemu

https://blog.damballa.com/archives/tag/malware-dropper
https://blog.damballa.com/archives/tag/malware-dropper
https://github.com/zhaoruoxu/lochsemu
https://github.com/zhaoruoxu/lochsemu


Automatic Detection and Analysis of Encrypted Messages in Malware 117

22. Zhao, R., Gu, D., Li, J., Liu, H.: Detecting encryption functions via process emu-
lation and IL-based program analysis. In: Chim, T.W., Yuen, T.H. (eds.) ICICS
2012. LNCS, vol. 7618, pp. 252–263. Springer, Heidelberg (2012)

23. Zhao, R., Gu, D., Li, J., Yu, R.: Detection and analysis of cryptographic data
inside software. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp.
182–196. Springer, Heidelberg (2011)


	Automatic Detection and Analysis of Encrypted Messages in Malware
	1 Introduction
	2 Background and Related Work
	3 System Description
	3.1 System Overview
	3.2 Message Structure Inference
	3.3 Data-Oriented Analysis and Algorithm Detection
	3.4 Sub-message Generation
	3.5 Message Reconstruction

	4 Data Dependency and Data Pattern Analysis
	4.1 Detecting Block Ciphers
	4.2 Detecting Stream Ciphers
	4.3 Detecting Hash Functions
	4.4 Detecting Encoding Functions
	4.5 Detecting Checksums
	4.6 Inferring Private Algorithms

	5 Implementation and Evaluation
	5.1 Entropy Metrics
	5.2 Case Study

	6 Conclusion
	A ZeuS Botnet Message Format
	References


