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▪ A decentralized and distributed system.

▪ Secured using cryptography.

▪ Trust arises from the majority of peers, not an authority.

▪ Blockchain 1.0:

▪ Cryptocurrency (Bitcoin)

▪ Blockchain 2.0:

▪ Smart Contract (Ethereum)

Blockchain



▪ Programs that permanently exist and automatically run 

on the blockchain.

▪ Enabling the encoding of complex logic:

▪ Payoff schedule

▪ Investment assumptions

▪ Interest policy

▪ ……

Ethereum Smart Contract



▪ Written in high-level languages (e.g., Solidity).

▪ Compiled to low-level bytecode.

▪ Executed on the Ethereum Virtual Machine (EVM).

Ethereum Smart Contract
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mapping(address => uint) public balances;

...

function send(address receiver, uint amount) public {

        require(amount <= balances[msg.sender]);

        balances[msg.sender] -= amount;

        balances[receiver] += amount;

}



Outline

1 Background

2 Motivation

3 Automated Rectification with SMARTSHIELD

4 Evaluation

5 Conclusion



Attacks on Smart Contracts



Motivation

• A smart contract can never be updated after its deployment to the 

blockchain.

• Existing tools only locate smart contract bugs instead of helping 

developers fix the buggy code.

• A large portion of smart contract bugs share common code patterns, 

indicating that they can be fixed through a unified approach.

Key Insights



Insecure Code Patterns in Smart Contracts

▪ Code Pattern 1: State Changes after External Calls.

▪ A state variable is updated after an external function call.

▪ May result in a re-entrancy bug.
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mapping (address => uint) public userBalances;

...

function withdrawBalance(uint amountToWithdraw) public {

    require(userBalances[msg.sender] >= amountToWithDraw);

+   userBalances[msg.sender] -= amountToWithdraw;

    msg.sender.call.value(amountToWithdraw)();

-   userBalances[msg.sender] -= amountToWithdraw;

}



Insecure Code Patterns in Smart Contracts

▪ Code Pattern 2: Missing Checks for Out-of-Bound Arithmetic Operations.

▪ An arithmetic operation is executed without checking the data validity in advance.

▪ May cause an arithmetic bug.
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uint public lockTime = now + 1 weeks;

address public user;

...

function increaseLockTime(uint timeToIncrease) public {

    require(msg.sender == user);

+   require(lockTime + timeToIncrease >= lockTime);

    lockTime += timeToIncrease;

}

...

function withdrawFunds() public {

    require(now > lockTime);

    user.transfer(address(this).balance);

}



Insecure Code Patterns in Smart Contracts

▪ Code Pattern 3: Missing Checks for Failing External Calls.

▪ The return value is not being checked after an external function call.

▪ May cause an unchecked return value bug.
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bool public payedOut = false;

address public winner;

uint public bonus;

...

function sendToWinner() public {

    require(!payedOut && msg.sender == winner);

-   msg.sender.send(bonus);

+   require(msg.sender.send(bonus));

    payedOut = true;

}



Our Approach

▪ Automatically fix insecure cases with typical patterns in smart contracts before their deployments.

▪ Challenges & Solutions:

▪ Compatibility    → Bytecode-Level Program Analysis.

▪ Reliability          → Semantic-Preserving Code Transformation.

▪ Economy          → Gas Optimization.
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Automated Rectification with SMARTSHIELD
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▪ Take a smart contract as input.

▪ Output a secure EVM bytecode without any of the three insecure code patterns:

▪ State changes after external calls.

▪ Missing checks for out-of-bound arithmetic operations.

▪ Missing checks for failing external calls.

▪ Generate a rectification report to the developer.

High-Level Workflow of SMARTSHIELD



▪ Bytecode-Level Semantic Information:

▪ Control and data dependencies among instructions in EVM bytecode.

▪ Necessary for further code transformation and secure bytecode generation.

▪ Extract bytecode-level semantic information from:

▪ Abstract Syntax Tree (AST): Control- and data-flow analysis.

▪ Unrectified EVM Bytecode: Abstractly emulate the execution of the contract bytecode.

Semantic Extraction



▪ Strategy 1: Control Flow Transformation.

▪ Revise state changes after external calls.

▪ Adjust the original control flow by moving state 

change operations to the front of external calls.

▪ Preserve the original dependencies among 

instructions in EVM bytecode.

Contract Rectification
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▪ Strategy 2: DataGuard Insertion.

▪ Fix missing checks for out-of-bound arithmetic 

operations, and missing checks for failing 

external calls.

▪ Dataguard:

▪ Sequences of instructions that perform certain 

data validity checks.

Contract Rectification
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Rectified Contract Generation

▪ Bytecode Relocation:

▪ Update all unaligned target addresses of jump instructions.

▪ Bytecode Validation:

▪ Validate whether the other irrelevant functionalities are affected.

▪ Rectification Report:

▪ Record the concrete modifications for further manual verification or adjustments.
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Research Questions

▪ RQ1: Scalability.

▪ How scalable is SMARTSHIELD in rectifying real-world smart contracts?

▪ RQ2: Correctness.

▪ How effective and accurate is SMARTSHIELD in fixing insecure cases with typical patterns 

and assuring the functionality consistency between the rectified and the original contracts?

▪ RQ3: Cost.

▪ What is the additional cost of the rectified contract?



Dataset

▪ A snapshot of the first 7,000,000 blocks in the Ethereum Mainnet (ETH).

▪ 2,214,409 real-world smart contracts.

▪ Label insecure cases with the help of state-of-the-art smart contract analysis tools.

▪ 95,502 insecure cases in 28,621 contracts.



RQ1: Scalability

▪ 87,346 (91.5%) insecure cases were fixed.

▪ 25,060 (87.6%) insecure contracts were fully rectified.

▪ The remaining insecure cases were marked as “unrectifiable” due to a conservative policy.



RQ2: Correctness

▪ Part 1: Evaluate whether SMARTSHIELD 

actually fixed the insecure code in contracts.

▪ Leverage prevalent analysis techniques to 

examine each rectified contract.

▪ Replay exploits of existing high-profile 

attacks against rectified contracts.



RQ2: Correctness

▪ Part 2: Validate whether the functionalities of each rectified contract are still executed 

consistently.

▪ Use historical transaction data to re-execute each rectified contract.

▪ Check whether the implemented functionalities are executed still as the same.

▪ 268,939 historical transactions were replayed.

▪ Only 13 contracts showed inconsistency due to incompatible issues.



RQ3: Cost

▪ The average size increment for each contract is 

around 1.0% (49.3 bytes).

▪ The gas consumption for each rectified contract 

increases by 0.2% on average, that is, 0.0001 USD.
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Conclusion

▪ A first step towards a general-purpose smart contract protection against attacks exploiting 

insecure contracts.

▪ An automated smart contract rectification system, SMARTSHIELD, to generate secure EVM 

bytecode without typical insecure patterns for deployment.

▪ An evaluation with 28,621 real-world buggy contracts—87,346 (91.5%) of insecure cases were 

automatically fixed.

▪ Effective and economical contract protection:

▪ The rectified contracts are secure against common attacks.

▪ The rectification only introduces a 0.2% average gas increment for each contract.



In memory of medical staff who bravely fight COVID

During the new coronavirus infection in 2020:

- Li Wenliang and 8 other doctors died of illness

- More than 3,000 health workers infected

Pay the highest respect to all the medical staff !



Questions?
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