
SMARTSHIELD: Automatic Smart Contract
Protection Made Easy

Yuyao Zhang1, Siqi Ma2, Juanru Li1, Kailai Li1, Surya Nepal2, Dawu Gu1

1Shanghai Jiao Tong University, Shanghai, China
2Data61, CSIRO, Sydney, Australia

Outline

1 Background

2 Motivation

3 Automated Rectification with SMARTSHIELD

4 Evaluation

5 Conclusion

Outline

1 Background

2 Motivation

3 Automated Rectification with SMARTSHIELD

4 Evaluation

5 Conclusion

▪ A decentralized and distributed system.

▪ Secured using cryptography.

▪ Trust arises from the majority of peers, not an authority.

▪ Blockchain 1.0:

▪ Cryptocurrency (Bitcoin)

▪ Blockchain 2.0:

▪ Smart Contract (Ethereum)

Blockchain

▪ Programs that permanently exist and automatically run

on the blockchain.

▪ Enabling the encoding of complex logic:

▪ Payoff schedule

▪ Investment assumptions

▪ Interest policy

▪ ……

Ethereum Smart Contract

▪ Written in high-level languages (e.g., Solidity).

▪ Compiled to low-level bytecode.

▪ Executed on the Ethereum Virtual Machine (EVM).

Ethereum Smart Contract

0000:

0002:

0004:

0005:

0007:

0008:

000A:

000B:

000C:

000F:

0010:

0011:

0012:

0014:

0015:

PUSH1 0x01

PUSH1 0xFF

AND

PUSH1 0x80

MSTORE

PUSH1 0X80

MLOAD

ISZERO

PUSH2 0x0011

JUMPI

STOP

JUMPDEST

PUSH1 0x00

DUP1

REVERT

6001

60FF

16

6080

52

6080

51

15

61008A

57

00

5B

6000

80

FD

1

2

3

4

5

6

7

mapping(address => uint) public balances;

...

function send(address receiver, uint amount) public {

 require(amount <= balances[msg.sender]);

 balances[msg.sender] -= amount;

 balances[receiver] += amount;

}

Outline

1 Background

2 Motivation

3 Automated Rectification with SMARTSHIELD

4 Evaluation

5 Conclusion

Attacks on Smart Contracts

Motivation

• A smart contract can never be updated after its deployment to the

blockchain.

• Existing tools only locate smart contract bugs instead of helping

developers fix the buggy code.

• A large portion of smart contract bugs share common code patterns,

indicating that they can be fixed through a unified approach.

Key Insights

Insecure Code Patterns in Smart Contracts

▪ Code Pattern 1: State Changes after External Calls.

▪ A state variable is updated after an external function call.

▪ May result in a re-entrancy bug.

1

2

3

4

5

6

7

8

mapping (address => uint) public userBalances;

...

function withdrawBalance(uint amountToWithdraw) public {

 require(userBalances[msg.sender] >= amountToWithDraw);

+ userBalances[msg.sender] -= amountToWithdraw;

 msg.sender.call.value(amountToWithdraw)();

- userBalances[msg.sender] -= amountToWithdraw;

}

Insecure Code Patterns in Smart Contracts

▪ Code Pattern 2: Missing Checks for Out-of-Bound Arithmetic Operations.

▪ An arithmetic operation is executed without checking the data validity in advance.

▪ May cause an arithmetic bug.

1

2

3

4

5

6

7

8

9

10

11

12

13

uint public lockTime = now + 1 weeks;

address public user;

...

function increaseLockTime(uint timeToIncrease) public {

 require(msg.sender == user);

+ require(lockTime + timeToIncrease >= lockTime);

 lockTime += timeToIncrease;

}

...

function withdrawFunds() public {

 require(now > lockTime);

 user.transfer(address(this).balance);

}

Insecure Code Patterns in Smart Contracts

▪ Code Pattern 3: Missing Checks for Failing External Calls.

▪ The return value is not being checked after an external function call.

▪ May cause an unchecked return value bug.

1

2

3

4

5

6

7

8

9

10

bool public payedOut = false;

address public winner;

uint public bonus;

...

function sendToWinner() public {

 require(!payedOut && msg.sender == winner);

- msg.sender.send(bonus);

+ require(msg.sender.send(bonus));

 payedOut = true;

}

Our Approach

▪ Automatically fix insecure cases with typical patterns in smart contracts before their deployments.

▪ Challenges & Solutions:

▪ Compatibility → Bytecode-Level Program Analysis.

▪ Reliability → Semantic-Preserving Code Transformation.

▪ Economy → Gas Optimization.

Deploy

Source Code

Compile

Contract
Developer

Automated
Rectification

Rectified
Contract

Attackers

Outline

1 Background

2 Motivation

3 Automated Rectification with SMARTSHIELD

4 Evaluation

5 Conclusion

Automated Rectification with SMARTSHIELD

DataGuard
Insertion

Control Flow
Transformation

Bytecode
Validation

Bytecode
Relocation

Smart
Contract

Abstract Syntax Tree
(AST)

Unrectified
EVM Bytecode

0000:

0002:

0003:

0004:

0007:

0008:

0009:

PUSH1 0x80

MLOAD

ISZERO

PUSH2 0x0011

JUMPI

STOP

JUMPDEST

...
Rectified
Contract

Rectification
Report

Bytecode-Level
Semantic Information

Semantic Extraction Contract Rectification

▪ Take a smart contract as input.

▪ Output a secure EVM bytecode without any of the three insecure code patterns:

▪ State changes after external calls.

▪ Missing checks for out-of-bound arithmetic operations.

▪ Missing checks for failing external calls.

▪ Generate a rectification report to the developer.

High-Level Workflow of SMARTSHIELD

▪ Bytecode-Level Semantic Information:

▪ Control and data dependencies among instructions in EVM bytecode.

▪ Necessary for further code transformation and secure bytecode generation.

▪ Extract bytecode-level semantic information from:

▪ Abstract Syntax Tree (AST): Control- and data-flow analysis.

▪ Unrectified EVM Bytecode: Abstractly emulate the execution of the contract bytecode.

Semantic Extraction

▪ Strategy 1: Control Flow Transformation.

▪ Revise state changes after external calls.

▪ Adjust the original control flow by moving state

change operations to the front of external calls.

▪ Preserve the original dependencies among

instructions in EVM bytecode.

Contract Rectification

0000:

0003:

0005:

0006:

0008:

0009:

000B:

000C:

001C:

001F:

0021:

0031:

0033:

0034:

0036:

PUSH2 0x5B61

PUSH1 0x80

MSTORE

PUSH1 0x80

MLOAD

PUSH1 0x00

SSTORE

CALL

...

PUSH2 0x5B61

PUSH1 0x80

MSTORE

...

PUSH1 0x80

MLOAD

PUSH1 0x00

SSTORE

+ 615B61

+ 6080

+ 52

+ 6080

+ 51

+ 6000

+ 55

 F1

 ...

- 615B61

- 6080

- 52

 ...

- 6180

- 51

- 6000

- 55

Data Dependency Rectification

▪ Strategy 2: DataGuard Insertion.

▪ Fix missing checks for out-of-bound arithmetic

operations, and missing checks for failing

external calls.

▪ Dataguard:

▪ Sequences of instructions that perform certain

data validity checks.

Contract Rectification

0000:

0002:

0003:

0006:

0007:

000A:

000D:

000E:

008A:

009A:

PUSH1 0x04

CALLDATALOAD

PUSH2 0x93A8

ADD

PUSH2 0x000E

PUSH2 0x008A

JUMP

JUMPDEST

...

JUMPDEST

<Safe Function for Addition>

JUMP

 6004

 35

 6193A8

- 01

+ 61000E

+ 61008A

+ 56

+ 5B

 ...

+ 5B

+

+ 56

Control Flow Transfer

Rectified Contract Generation

▪ Bytecode Relocation:

▪ Update all unaligned target addresses of jump instructions.

▪ Bytecode Validation:

▪ Validate whether the other irrelevant functionalities are affected.

▪ Rectification Report:

▪ Record the concrete modifications for further manual verification or adjustments.

Outline

1 Background

2 Motivation

3 Automated Rectification with SMARTSHIELD

4 Evaluation

5 Conclusion

Research Questions

▪ RQ1: Scalability.

▪ How scalable is SMARTSHIELD in rectifying real-world smart contracts?

▪ RQ2: Correctness.

▪ How effective and accurate is SMARTSHIELD in fixing insecure cases with typical patterns

and assuring the functionality consistency between the rectified and the original contracts?

▪ RQ3: Cost.

▪ What is the additional cost of the rectified contract?

Dataset

▪ A snapshot of the first 7,000,000 blocks in the Ethereum Mainnet (ETH).

▪ 2,214,409 real-world smart contracts.

▪ Label insecure cases with the help of state-of-the-art smart contract analysis tools.

▪ 95,502 insecure cases in 28,621 contracts.

RQ1: Scalability

▪ 87,346 (91.5%) insecure cases were fixed.

▪ 25,060 (87.6%) insecure contracts were fully rectified.

▪ The remaining insecure cases were marked as “unrectifiable” due to a conservative policy.

RQ2: Correctness

▪ Part 1: Evaluate whether SMARTSHIELD

actually fixed the insecure code in contracts.

▪ Leverage prevalent analysis techniques to

examine each rectified contract.

▪ Replay exploits of existing high-profile

attacks against rectified contracts.

RQ2: Correctness

▪ Part 2: Validate whether the functionalities of each rectified contract are still executed

consistently.

▪ Use historical transaction data to re-execute each rectified contract.

▪ Check whether the implemented functionalities are executed still as the same.

▪ 268,939 historical transactions were replayed.

▪ Only 13 contracts showed inconsistency due to incompatible issues.

RQ3: Cost

▪ The average size increment for each contract is

around 1.0% (49.3 bytes).

▪ The gas consumption for each rectified contract

increases by 0.2% on average, that is, 0.0001 USD.

Outline

1 Background

2 Motivation

3 Automated Rectification with SMARTSHIELD

4 Evaluation

5 Conclusion

Conclusion

▪ A first step towards a general-purpose smart contract protection against attacks exploiting

insecure contracts.

▪ An automated smart contract rectification system, SMARTSHIELD, to generate secure EVM

bytecode without typical insecure patterns for deployment.

▪ An evaluation with 28,621 real-world buggy contracts—87,346 (91.5%) of insecure cases were

automatically fixed.

▪ Effective and economical contract protection:

▪ The rectified contracts are secure against common attacks.

▪ The rectification only introduces a 0.2% average gas increment for each contract.

In memory of medical staff who bravely fight COVID

During the new coronavirus infection in 2020:

- Li Wenliang and 8 other doctors died of illness

- More than 3,000 health workers infected

Pay the highest respect to all the medical staff !

Questions?

SMARTSHIELD: Automatic Smart Contract
Protection Made Easy

Yuyao Zhang1, Siqi Ma2, Juanru Li1, Kailai Li1, Surya Nepal2, Dawu Gu1

1Shanghai Jiao Tong University, Shanghai, China

2Data61, CSIRO, Sydney, Australia

	saner20main-id103-p-slides-v3
	EthPloit
	saner20main-id103-p-slides-v3

