=
A
,../.
T e - = [, YA 2 S
- - - § 7 L2 ..i‘ E—— G S SS)‘ =
- ! . ~3 8 s - ?3 e 1\':':’ <
— Z == 5 ~
.o \ . A eAc_/J 73 (K Sl -
B v\(’?‘?,\'ui 6’ - % - =5
f N rHE" (5 _ L O o =

SMARTSHIELD: Automatic Smart Contract
Protection Made Easy

Yuyao Zhang?, Sigi Ma?, Juanru Lit, Kailai Lit, Surya Nepal?, Dawu Gu?!
IShanghari Jiao Tong University, Shanghai, China
’Datab1, CSIRO, Sydney, Australia

Outline

Background

Motivation

Automated Rectification with SMARTSHIELD

Evaluation

Conclusion

Outline

Motivation

Automated Rectification with SMARTSHIELD

Evaluation

Conclusion

Blockchain

= A decentralized and distributed system.

Secured using cryptography.

Trust arises from the majority of peers, not an authority.

Blockchain 1.0:
= Cryptocurrency (Bitcoin)

Blockchain 2.0:

= Smart Contract (Ethereumn)

Ny
PARIXE

N SHANGHAI JIAO TONG UNIVERSITY 5 o4
- A

Ethereum Smart Contract R

= Programs that permanently exist and automatically run
on the blockchain.

r B

contract token {
mapping (addr

public coinBalanceOf
event CoinTran

sender, address rece:

= Enabling the encoding of complex logic:

= Payoff schedule

. functiop token (uint
* Investment assumptions oogo; 1T SUPPLY (518
coinBalanceOf[

supply;
}

= Interest policy }

X AAK

g SHANGHAI JIAO TONG UNIVERSITY

Ethereum Smart Contract

= Written in high-level languages (e.g., Solidity).
= Compiled to low-level bytecode.

= Executed on the Ethereum Virtual Machine (EVM).

~

mapping(address => uint) public balances;

function send(address receiver, uint amount) public {
require(amount <= balances[msg.sender]);
balances[msg.sender] -= amount;
balances[receiver] += amount;

(1; O U b W N 14‘\

-

AR ="
0000 : 6001 PUSH1 ox01
0002 : 60FF PUSH1 OxFF
0004 : 16 AND
0005 : 6080 PUSH1 ©x860
0007 : 52 MSTORE
0008 : 6080 PUSH1 ©X80
©00A : 51 MLOAD
000B : 15 ISZERO
000C: 61008A PUSH2 0x0011
O00F : 57 JUMPI
0010: 00 STOP
0011: 5B JUMPDEST
0012: 6000 PUSH1 ©x00
0014 : 80 DUP1
0015: FD REVERT

Outline

Background

Motivation

Automated Rectification with SMARTSHIELD

Evaluation

Conclusion

P TELT

SHANGHAI JIAO TONG UNIVERSITY

Attacks on Smart Contracts R

]

|Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange

Wallet bug freezes more than $150 | a ¢50 million Hack Just Showed
million worth of Ethereum That the DAO Was All Too Human

4

red a new vulnerability named .
ability affects a publicly traded Published
atchOverflow [1] and proxyQverflow [2] 28 April 2018
eneratina.countless tokens. Instead,

Tanc

? S RN
00100

On July 19 the ethereum community was warned that the Parity client
version 1.5 and above contained a critical vulnerability in the multi-
signature wallet feature. Further, a group of multi-signature "black hat

SpankChain Loses
$40K in Hack Due to \

exploiters” has managed to drain 150,000 ether from multi-sig wallets and P

Smart Contract Bug

Oct 9, 2018 at 14:00 UTC Updated Oc 018 at 14:01 UTC

25% of All Smart Contracts Contain Critical
Bugs

ICO projects.

For every problem that smart contracts solve, they seem to introduce
another. In a week in which EOS has made news for all the wrong reasons
over a RAM vulnerability, a code auditor has revealed the prevalence of

Our vulnerability-scanning system at PeckShield has so far discovered several dangerous
smart contract vulnerabilities (batchOverflow[1], proxyOverflow[2], transferFlaw[3],

ownerAnyone[4], multiOverflow[5]). Some of them could be used by attackers to generate 18 May 2018
tokens out of nowhere while others can be used to steal tokens from legitimate holders.

smart contract bugs. Security firm Hosho, which has forged a new

Published

partnership with community managers Amazix, has found that one in four

projects contains critical vulnerabilities.

Tarns

Motivation

mamm Key Insights

* A smart contract can never be updated after its deployment to the
blockchain.

» Existing tools only locate smart contract bugs instead of helping
developers fix the buggy code.

* A large portion of smart contract bugs share common code patterns,

Indicating that they can be fixed through a unified approach.

YERAAY

Y 2 SHANGHAI JIAO TONG UNIVERSITY

Insecure Code Patterns in Smart Contracts

= Code Pattern 1: State Changes after External Calls.
= A state variable is updated after an external function call.
= May result in a re-entrancy bug.

~N

mapping (address => uint) public userBalances;

function withdrawBalance(uint amountToWithdraw) public {
require(userBalances[msg.sender] >= amountToWithDraw);

+ userBalances[msg.sender] -= amountToWithdraw;

msg.sender.call.value(amountToWithdraw)();

- userBalances[msg.sender] -= amountToWithdraw;

ﬂO\IO\mthH\

_

& SHANGHAI JIAO TONG UNIVERSITY

Insecure Code Patterns in Smart Contracts e [

]

= Code Pattern 2: Missing Checks for Out-of-Bound Arithmetic Operations.
= An arithmetic operation iIs executed without checking the data validity in advance.
= May cause an arithmetic bug.

(1

~

uint public lockTime = now + 1 weeks;
address public user;

function increaselLockTime(uint timeToIncrease) public {
require(msg.sender == user);

2
3
4
5
6 |+ require(lockTime + timeTolIncrease >= lockTime);
7 lockTime += timeToIncrease;

8

9

10 function withdrawFunds() public {
11 require(now > lockTime);
12 user.transfer(address(this).balance);

G} /

@y) YAXAAS
S TONG VERSITY

2 SHANGHAI JIAO UNIVER!

Insecure Code Patterns in Smart Contracts e [

]

= Code Pattern 3: Missing Checks for Failing External Calls.
= The return value is not being checked after an external function call.
= May cause an unchecked return value bug.

bool public payedOut = false;
address public winner;
uint public bonus;

function sendToWinner() public {
require(!payedOut && msg.sender == winner);

- msg.sender.:-cnc(bonus);

+ require(msg.sender.scnd(bonus));

lDOO\lO\W-thI-\\

payedOut = true;

€
-

@) rERALE

SHANGHAI JIAO TONG UNIVERSITY

Our Approach

7 NV N\T+ 1= %Tﬁ

= Automatically fix insecure cases with typical patterns in smart contracts before their deployments.

Contract Source Code Automated Rectified Attackers
Developer Rectification Contract

= Challenges & Solutions:
* Compatibility =2 Bytecode-Level Program Analysis.
= Reliability - Semantic-Preserving Code Transformation.

= Economy - Gas Optimization.

Outline

Background

Motivation

4E)» Automated Rectification with SMARTSHIELD

Evaluation

Conclusion

YEXAAE

SHANGHAI JIAO TONG UNIVERSITY

(- N |
I Semantic Extraction I Contract Rectification |
I I I
| - r D I
I |1 | -
| 1 |
| . Control Flow | v
— e > . —
| || Transformation |
| | | ~ ~ ~ ~ | Rectification
| Abstract Syntax Tree | L y | Report
I (AST) 1 |
I | | Bytecode | Bytecode |
[r * 1 | Relocation | validation |
Smart | 0000: PUSH1 0x80 || |
Contract | 0002: MLOAD |] 4) |
I 0003: ISZERO I I _ Y, _ Yy, I :
| 0004: PUSH2 0x0011 Bytecode-LeveI I I | —_—
0007: JUMPI Semantic Information DataGuard L, | =
I 0008: STOP I I Insertion I
| 0009: JUMPDEST |1 I Rectified
| | .) | | Contract
: Unrectified : : \ / |
|

EVM Bytecode

High-Level Workflow of SMARTSHIELD

= Take a smart contract as input.

= Qutput a secure EVM bytecode without any of the three insecure code patterns:
= State changes after external calls.
= Missing checks for out-of-bound arithmetic operations.

= Missing checks for failing external calls.

= Generate a rectification report to the developer.

Semantic Extraction e [T

= Bytecode-Level Semantic Information:
= Control and data dependencies among instructions in EVM bytecode.

= Necessary for further code transformation and secure bytecode generation.

= Extract bytecode-level semantic information from:
= Abstract Syntax Tree (AST): Control- and data-flow analysis.

= Unrectified EVM Bytecode: Abstractly emulate the execution of the contract bytecode.

YEXAAY

SHANGHAI JIAO TONG UNIVERSITY

Contract Rectification P
. 4 N
= Strategy 1: Control Flow Transformation. 0000 e R
0003 : + 6080 PUSH1 Ox80
= Revise state changes after external calls. 0005: |+ 52 MSTORE
0006 : + 6080 PUSH1 ©Ox80
0008 : + 51 MLOAD
= Adjust the original control flow by moving state 9009: |+ 6000 PUSHL 0x@0
000B : + 55 SSTORE
change operations to the front of external calls. 000C : F1 CALL
= Preserve the original dependencies among L oo1c: [G el TS eEel
instructions in EVM bytecode. . ¥ @01F: |- 6080 PUSH1 @x8e
5 0021: |- 52 MSTORE
:\'70031: - 6180 PUSH1 Ox80
see33: |- 51 MLOAD
{ y0034: |- 6000 PUSH1 @x00
"~ 9036: |- 55 SSTORE
\) SLLLTTL Data Dependency <« Rectification)

Y E X4 A%

SHANGHAI JIAO TONG UNIVERSITY

Contract Rectification IS

= Strategy 2: DataGuard Insertion.

= Fix missing checks for out-of-bound arithmetic ~N
. . . 0000 : 6004 PUSH1 @x04
operations, and missing checks for failing 0002 - CALLDATALOAD
external calls. 0003: 6193A8 PUSH2 0x93A8
0006: |- 01 ADD
= Dataguard: @007: |+ 61000E PUSH2 @Ox@0OE
- - - A: 61008A
Sequences of instructions that perform certain 900 * PUSH2 Ox008A
o @00D: |+ 56 JumMp
data validity checks. > @00E: |+ 5B JUMPDEST
Category | Instruction | Operation | DataGuard > 008A: |+ 5B JUMPDEST
ADD a-+b a+b>a + <Safe Function for Addition>
Arithmetic ops SUB a—>b a>b . 909A : + 56 JUMP
MUL axb axXb+-a=5>
\ <~ Control Flow Transfer)
External calls | CALL | ret =a.call() | ret # 0

Rectifled Contract Generation

= Bytecode Relocation:

= Update all unaligned target addresses of jump instructions.

= Bytecode Validation:

= Validate whether the other irrelevant functionalities are affected.

= Rectification Report:
= Record the concrete modifications for further manual verification or adjustments.

Outline

Background

Motivation

Automated Rectification with SMARTSHIELD

Evaluation

Conclusion

Research Questions e [T

= RQ1: Scalability.

= How scalable is SMARTSHIELD in rectifying real-world smart contracts?

= RQ2: Correctness.

= How effective and accurate is SMARTSHIELD in fixing insecure cases with typical patterns
and assuring the functionality consistency between the rectified and the original contracts?

= RQ3: Cost.
= \What is the additional cost of the rectified contract?

YEXAAE

Y 2 SHANGHAI JIAO TONG UNIVERSITY

Dataset

A snapshot of the first 7,000,000 blocks in the Ethereum Mainnet (ETH).

2,214,409 real-world smart contracts.

Label insecure cases with the help of state-of-the-art smart contract analysis tools.

95,502 insecure cases in 28,621 contracts.

C # of insecure # of insecure
ategory

cases contracts
CP1 4,521 726
CpP2 80,825 25,470
CP3 10,156 4,811
Total | 95,502 | 28.621%

* Some contracts contain multiple insecure patterns.
CP.1: State Changes after External Calls
CP.2: Missing Checks for Out-of-Bound Arithmetic Ops
CP.3: Missing Checks for Failing External Calls

YEXAAE

*%” SHANGHAI JIAO TONG UNIVERSITY

RQ1: Scalability e [T

= 87,346 (91.5%) insecure cases were fixed.

= 25,060 (87.6%) insecure contracts were fully rectified.

of eliminated # of uneliminable # of rectified contracts
Category :
cases cases Fully | Partially
CP.1 3,567 054 573 153
CP.2 74,642 6,183 21,815 3,655
CP3 9,137 1,019 4,362 449
Total | 87,346 | 8,156 | 25,060* | 3,561%

* Some contracts contain multiple insecure patterns.

CP.1: State Changes after External Calls
CP.2: Missing Checks for Out-of-Bound Arithmetic Ops
CP.3: Missing Checks for Failing External Calls

= The remaining insecure cases were marked as “unrectifiable” due to a conservative policy.

YEXAAE

Y 2 SHANGHAI JIAO TONG UNIVERSITY

RQ2: Correctness
SN omd]

* Part 1. Evaluate whether SMARTSHIELD Insecure contract | Category | Date of attack
actually fixed the insecure code in contracts. p4o= [35]. [36] CP1 Tun, 17", 2016 [25]
- L lent vsis techni ¢ LedgerChannel [37] CP.1 Oct. 7t", 2018 [38]
everage prevalent analysis techniques to g umChain [39] CP2 Apr. 22742018 [26]
examine each rectified contract. SmartMesh [40] CP2 Apr. 24", 2018 [41]
UselessEthereumToken [42] CP.2 Apr. 27th 2018 [43]
= Replay exploits of existing high-profile Social Chain [44] CP2 May 37%, 2018 [45]
: e Hexagon [46] CP.2 May. 187 2018 [47]
attacks against rectified contracts. KotET [48] CP3 Feb. 677, 2016 [49]

* The DAO and the DarkDAO contract are considered to be identical.
CP.1: State Changes after External Calls
CP.2: Missing Checks for Out-of-Bound Arithmetic Ops
CP.3: Missing Checks for Failing External Calls

RQ?2: Correctness e [P

= Part 2: Validate whether the functionalities of each rectified contract are still executed

consistently.
= Use historical transaction data to re-execute each rectified contract.

= Check whether the implemented functionalities are executed still as the same.

= 268,939 historical transactions were replayed.

= Only 13 contracts showed inconsistency due to incompatible issues.

‘y»ﬁ/j‘

GHAI JTAO TONG UNIVERSITY

RQ3: Cost

= The average size increment for each contract is
around 1.0% (49.3 bytes).

= The gas consumption for each rectified contract

Increases by 0.2% on average, that is, 0.0001 USD.

m 0% -0.01%

m0.01%-0.1%

m0.1%-1%
1% - 10%

m 10% - 100%

/ﬁ534
s —205
\.‘..‘ -, \......— 26

Outline

Background

Motivation

Automated Rectification with SMARTSHIELD

Evaluation

4 Conclusion

Conclusion

7 NV N\T+ 1= ;Tﬁ

A first step towards a general-purpose smart contract protection against attacks exploiting
Insecure contracts.

= An automated smart contract rectification system, SMARTSHIELD, to generate secure EVM
bytecode without typical insecure patterns for deployment.

= An evaluation with 28,621 real-world buggy contracts—87,346 (91.5%) of insecure cases were
automatically fixed.
= Effective and economical contract protection:
= The rectified contracts are secure against common attacks.

= The rectification only introduces a 0.2% average gas increment for each contract.

In memory of medical staff who bravely fight COVID

During the new coronavirus infection in 2020:
- Li Wenliang and @ other doctors

- More than health workers

Pay the highest respect to all the medical staff!

7

SMARTSHIELD: Automatic Smart Contract
Protection Made Easy
Yuyao Zhang?, Sigi Ma?, Juanru Lit, Kailai Lit, Surya Nepal?, Dawu Gu?
1Shanghai Jiao Tong University, Shanghai, China
’Databl1, CSIRO, Sydney, Australia

Questions?

	saner20main-id103-p-slides-v3
	EthPloit
	saner20main-id103-p-slides-v3

