
Passwords in the Air: Harvesting Wi-Fi Credentials from
SmartCfg Provisioning

Changyu Li
Shanghai Jiao Tong University

lichangyu@sjtu.edu.cn

Quanpu Cai
Shanghai Jiao Tong University

cpeggsjtu@sjtu.edu.cn

Juanru Li
Shanghai Jiao Tong University

jarod@sjtu.edu.cn

Hui Liu
Shanghai Jiao Tong University

ice_wisdom@sjtu.edu.cn

Yuanyuan Zhang∗
Shanghai Jiao Tong University

yyjess@sjtu.edu.cn

Dawu Gu
Shanghai Jiao Tong University

dwgu@sjtu.edu.cn

Yu Yu
Shanghai Jiao Tong University

Westone Cryptologic Research Center
yyuu@sjtu.edu.cn

ABSTRACT
Smart devices without an interactive UI (e.g., a smart bulb) typically
rely on specific provisioning schemes to connect to wireless net-
works. Among all the provisioning schemes, SmartCfg is a popular
technology to configure the connection between smart devices and
wireless routers. Although the SmartCfg technology facilitates the
Wi-Fi configuration, existing solutions seldom take into serious
consideration the protection of credentials and therefore introduce
security threats against Wi-Fi credentials.

This paper conducts a security analysis against eight SmartCfg
based Wi-Fi provisioning solutions designed by different wireless
module manufacturers. Our analysis demonstrates that six manu-
facturers provide flawed SmartCfg implementations that directly
lead to the exposure of Wi-Fi credentials: attackers could exploit
these flaws to obtain important credentials without any substantial
efforts on brute-force password cracking. Furthermore, we keep
track of the smart devices that adopt such Wi-Fi provisioning so-
lutions to investigate the influence of the security flaws on real
world products. Through reversely analyzing the corresponding
apps of those smart devices we conclude that the flawed SmartCfg
implementations constitute a wide potential impact on the security
of smart home ecosystems.

CCS CONCEPTS
• Security and privacy→ Software security engineering;Mo-
bile and wireless security;

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’18, June 18–20, 2018, Stockholm, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5731-9/18/06. . . $15.00
https://doi.org/10.1145/3212480.3212496

KEYWORDS
Smart devices, Wi-Fi provisioning

ACM Reference Format:
Changyu Li, Quanpu Cai, Juanru Li, Hui Liu, Yuanyuan Zhang, Dawu
Gu, and Yu Yu. 2018. Passwords in the Air: Harvesting Wi-Fi Credentials
from SmartCfg Provisioning. In WiSec ’18: Proceedings of the 11th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, June
18–20, 2018, Stockholm, Sweden. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3212480.3212496

1 INTRODUCTION
Wireless smart devices nowadays facilitate various aspects of our
daily life. The applications of smart home, smart city, and smart
automation significantly benefit from the wireless connection capa-
bility of those devices. Nonetheless, the wide use of wireless smart
devices also introduces new attack vectors and increase the risk.
A typical security threat is the weak authentication of the wire-
less network. The authentication is often the crucial prerequisite
of many subsequent attacks. If the attacker could circumvent the
authentication and log in the protected wireless network, devices
in the same network area are exposed and face severe threats.

Although recent years have witnessed a series of attacks against
the authentication of the Wi-Fi standards, most of the attacks aim
to circumvent the authentication through cracking the login cre-
dentials (e.g., passwords) using a brute-force search [28], or uti-
lizing weaknesses of the authentication protocols to decrypt the
encrypted network traffics [29] [21]. In this paper, we present a
new type of security threat caused by a recently introduced ap-
plication scenario–the provisioning of smart devices. We observe
that many smart devices are often headless devices that have been
configured to operate without classical input devices such as moni-
tor, keyboard, or mouse. To help those smart devices without an
interactive UI to obtain the Wi-Fi credentials for wireless network
authentication, wireless chip vendors design auxiliary provisioning
solutions. However, these provisioning solutions less regulate the
protection scheme, which often leads to the leak of credentials.

In this paper, we pay particular attention to SmartCfg, a provi-
sioning technology designed to provide Wi-Fi credentials for smart

https://doi.org/10.1145/3212480.3212496
https://doi.org/10.1145/3212480.3212496
https://doi.org/10.1145/3212480.3212496

WiSec ’18, June 18–20, 2018, Stockholm, Sweden C. Li et al.

Smart Home Cloud

Smart Home
Apps

Smart Home
Devices

WLAN

Internet Internet

Figure 1: A typical structure of Smart Home Wi-Fi Configu-
ration Process

home devices (e.g., plug, washer, refrigerator). For a SmartCfg pro-
visioning solution, the credential information is encoded and pig-
gybacked on specific broadcasting packets. Typically, a SmartCfg
solution leverages an auxiliary mobile app to encode and broadcast
the credentials (Wi-Fi passwords and their corresponding SSIDs).
This broadcast is then captured by the smart device and the cre-
dentials are transmitted to it. To study the threats against current
SmartCfg provisioning solutions, we first investigated eight widely
used SmartCfg solutions of popular Wi-Fi chip vendors. Then we
conduct a large-scale security analysis of real world products adopt-
ing those solutions. We leverage information extracted from the
corresponding smart home app to identify which solution is used
by a particular smart device. Furthermore, we propose two types
of analysis to recover the proprietary credential encoding scheme
of the SmartCfg solution used between the mobile app and smart
home devices.

Through checking 821 apps related to real world smart home
devices, we find that 64 apps integrate at least one SmartCfg solu-
tion. A further security analysis demonstrates that 42 apps contain
severe security vulnerabilities due to either the insecurely designed
SmartCfg solution (six out of eight analyzed solutions are insecure)
or the incorrectly implementation caused by developers, and attack-
ers could exploit such vulnerabilities to obtain the authentication
credentials of wireless network.

In summary, this paper makes the following contributions:

• We study popular SmartCfg Wi-Fi provisioning solutions
and analyze the security by auditing the SDKs provided by
Wi-Fi chip vendors. We find that six out of eight studied
solutions contain severe security issues resulting in the leak
of Wi-Fi credentials.

• We propose a systematic security analysis against real world
smart home devices using SmartCfg solutions. The analy-
sis consists of how to identify SmartCfg solutions deployed

Smart Home App Smart Device

Entering SmartCfg state

Encoded Wi-Fi credentials

Obtaining Wi-Fi credentials
of the target AP

Figure 2: An illustration of SmartCfg provisioning process

in a smart device, and how to recover credentials encod-
ing scheme using either binary code reverse engineering or
differential traffic analysis.

• We present an overview of the ecosystem through analyzing
821 smart home apps. We find that 64 apps use SmartCfg
provisioning solutions and among them, 42 apps are vulner-
able. This indicates that a wide range of smart home devices
are affected.

2 BACKGROUND
In this section, we first present a typical application scenario, namely,
smart home with SmartCfg solution in place. Then we give a detail
description of the SmartCfg technology.

2.1 Smart Home
Smart home technology, also known as home automation, provides
homeowners the ability to remotely control smart devices at home.
A smart home is a residence that applies related techniques on
Internet-connected devices to enable remote monitoring and man-
agement of appliances and systems, such as controlling the switch,
monitoring indoor temperature and humidity [3]. Typically, a smart
home consists of three types of components: a set of smart devices,
a smart home app, and a smart home cloud. Figure 1 depicts the
relations between those components. Typical smart devices in a
smart home include smart light bulbs, smart locks, smart plugs, etc.
Those devices are often controlled through a smart home app on
user’s mobile phone (Android or iOS), which allows the user to
control smart devices remotely. The smart home cloud often plays
the role of bridging the smart home app and smart devices if they
are not in the same LAN, and helps store and manage data collected
from those smart devices.

Most smart devices nowadays adopt wireless network connec-
tion. To connect to the wireless network, a device integrates and
utilizes a Wi-Fi module. However, most smart home devices are
headless devices. That is, they have been configured to operate with-
out amonitor, keyboard, ormouse. Therefore, a process of preparing
and configuring the network, defined as the Wi-Fi provisioning, is
required at the first time a smart home device is deployed.

Generally, a smart device cannot accomplish the provisioning
by itself. Information about the network (e.g., the SSID and the
corresponding password) should be provided via other devices with

Passwords in the Air: Harvesting Wi-Fi Credentials from SmartCfg Provisioning WiSec ’18, June 18–20, 2018, Stockholm, Sweden

interactive UI (e.g., a smartphone or a tablet). This provisioning
procedure is a new application scenario and thus may introduce
new attack vectors.

2.2 SmartCfg Provisioning
2.2.1 Overview. First introduced by Texas Instruments (TI) in

2012 [15], SmartCfg is a provisioning technology designed to pro-
vide Wi-Fi credentials for smart devices without an interactive UI
(e.g., plug, washer, refrigerator). After five years of development,
it is widely accepted by various wireless solution providers. Wire-
less chip manufacturers such as Realtek, MediaTek, MXCHIP, and
Espressif have also implemented their variants. In this paper we
use SmartCfg to refer to all those variants.

A SmartCfg provisioning is used to configure a smart device
and help it connect to the wireless network. Typically, a SmartCfg
solution possesses three typical features: First, it relies on a mobile
app to encode and send authentication credentials to the smart
devices through broadcasting. Second, smart devices passively lis-
ten to the encoded information without knowing the identity of
the sender. Third, the credentials (e.g., passwords) are encoded as
part of the metadata of 802.11 packet (e.g., packet length) rather
than the content of the packet. As a result, even though the data
field in the 802.11 packet frame is encrypted with either WEP or
WPA2 [30], devices listening to the data in the air could intercept
the information of metadata regardless of the actual data content.

2.2.2 Provisioning Process. One typical process of SmartCfg
provisioning is illustrated in Figure 2. Before the provisioning, a
smart device in promiscuous mode continuously captures all the
packets in the network. When a provisioning procedure starts,
the mobile app encodes the Wi-Fi credentials (both SSID and pass-
word) into several packets and broadcasts those packets. Once those
packets are captured and decoded by the smart device, it uses this
information to connect to the wireless network

(1) A smart device that supports SmartCfg technology enters its
SmartCfg state, in which the Wi-Fi module of the device is
enabled in a sniffer mode to receive broadcast information.

(2) A user use the smart home app on a smart phone to input
the credentials (i.e., passwords). Then the smart home app
encodes the SSID and password as 802.11 packets of special
format, and sends them into the wireless network it connects.

(3) The Wi-Fi module of smart device captures all 802.11 data
packets in a few seconds and tries to decode them using
certain algorithm to obtain the SSID and password. After
obtaining Wi-Fi credentials, the device then connects to the
wireless network.

2.2.3 Data Encoding Mode of SmartCfg. SmartCfg solutions
encode the credentials into themetadata of 802.11 packets. However,
different solutions adopt different encoding modes. In general, there
are three popular encoding modes as Table 1 illustrates:

s
• Data in Multicast Addresses (DMA) In this mode, the in-
formation is encoded into the last 23 bits of the Destination
Address field of the packets. The DMA row of Table 1 gives
a concrete example. In this example every two bytes of the
payload are encoded into the last 2 bytes of the destination

Table 1: Examples of different types of SmartCfg

Mode Source Address Destination Address Length

DMA

00:90:4c:17:1a:9b 01:00:5e:01:49:6f 43
00:90:4c:17:1a:9b 01:00:5e:02:54:36 43
00:90:4c:17:1a:9b 01:00:5e:03:36:36 43
00:90:4c:17:1a:9b 01:00:5e:04:37:38 43
00:90:4c:17:1a:9b 01:00:5e:05:39:cc 43

DPL

00:90:4c:17:1a:9b FF:FF:FF:FF:FF:FF 47
00:90:4c:17:1a:9b FF:FF:FF:FF:FF:FF 67
00:90:4c:17:1a:9b FF:FF:FF:FF:FF:FF 47
00:90:4c:17:1a:9b FF:FF:FF:FF:FF:FF 67
00:90:4c:17:1a:9b FF:FF:FF:FF:FF:FF 96

Hybrid

00:90:4c:17:1a:9b 01:00:5e:01:01:01 556
00:90:4c:17:1a:9b 01:00:5e:02:02:02 555
00:90:4c:17:1a:9b 01:00:5e:03:03:03 554
00:90:4c:17:1a:9b 01:00:5e:04:04:04 291
00:90:4c:17:1a:9b 01:00:5e:05:05:05 338
00:90:4c:17:1a:9b 01:00:5e:06:06:06 198

address, while the ante-penultimate byte of the address is
used as the index.

• Data in Packet Length (DPL) In this mode, the informa-
tion is encoded into the length field of each packet (the
content is randomly filled). As illustrated in the DPL row
of the Table 1, messages are encoded into the length of the
packet sequence and then are broadcasted.

• Hybrid In this mode, both the Destination Address field and
the packet length are used to encode the information. The
Destination Address is usually used as the index and the
message is often stored at the length field. The advantage of
Hybrid mode is that one packet contains more information
and it is thus more efficient.

According to our observation, one important feature of SmartCfg
data encoding is that it introduces a preamble. A preamble is a
sequence of packets (e.g., three packets) with same length and
content. The purpose of this preamble is to help devices locate the
data payload. We find that in most provisioning procedures the app
will first issue a preamble (or synchronization code) to the network.
The advantage of sending the preamble sequence first is that the
device could locate, by the preamble, the beginning of a series of
packets that matches a particular protocol. Then it is able to extract
data from these packets.

Another usage of the preamble is to help measure the padding
length introduced by the encryption. Since the app does not know
what is the exact length of an encrypted data packet of WPA or
WPA2, it can only prepare a set of preamble packets and broadcast
them. Then the device capturing and identifying the preamble could
calculate the length of padding data. Therefore, the use of preamble
helps devices adjust the packet length.

3 SECURITY ANALYSIS OF SMARTCFG
In this section, we highlight the security analysis against SmartCfg
provisioning solutions with a focus on their Wi-Fi credential encod-
ing schemes. Before introducing the concrete analysis procedure,
we first illustrate the threat model and challenges. Then we detail

WiSec ’18, June 18–20, 2018, Stockholm, Sweden C. Li et al.

the process of SmartCfg security analysis, which aims to recover
proprietary credentials encoding schemes used in real world smart
home devices and identify those insecure ones.

3.1 Threat Models and Challenges
3.1.1 Threat Models. Since the most valuable data in a provi-

sioning procedure is the password (and the corresponding Wi-Fi
SSID), we assume that this credential is the main target for attackers.
However, an attacker is assumed to be blocked outside the wireless
local area network (WLAN) and cannot physically or remotely con-
nect to the device (otherwise he already has access to the internal
network). To obtain this credential, the attacker can only recover
Wi-Fi credentials from the wireless data in the air (even though
the data may be encrypted). We also assume that the attacker does
not know in advance the used smart home device and mobile apps.
But he can collect typical SmartCfg solutions beforehand and then
conduct reverse engineering to recover the used Wi-Fi provisioning
solution and its credentials encoding scheme.

In addition, a crucial requirement for a successful attack is that
it must be fulfilled at the same time the device is executing the
provisioning. Although the provisioning procedure does not last
for a long time, we assume the attacker is always monitoring the
wireless data and he can discover such behavior with a sniffing
attack: the attacker only needs to prepare a device with a Wi-Fi
module in the promiscuous mode; the device would be placed near
the wireless network and continuously monitor 802.11 data packets
in the air, attempting to decode potential provisioning packets using
several decoding functions prepared in advance. Once some packets
are successfully decoded, the attacker will then use the obtained
credential to connect to the target Wi-Fi.

3.1.2 Challenges. To analyze the security of SmartCfg solu-
tions used by those real world devices, the challenges we face may
include:

• How to identify the specific SmartCfg solution used
by the smart home device. Knowingwhich SmartCfg solu-
tion is used by the analyzed target significantly facilitates the
subsequent security analysis. However, almost all analysis
targets are real world smart home devices rather than devel-
opment boards. Despite the knowledge of existing SmartCfg
solutions (in the form of specifications and documentations),
device manufacturers often do not label which solution is
used for a certain device. Therefore, analyst should utilize
different kinds of side-channel information (e.g., the model
of used wireless chip) to help deduce the specific SmartCfg
solution in use.

• How to recover the used provisioning protocol, in par-
ticular, the credentials encoding scheme. Even with the
knowledge of which SmartCfg solution is adopted by the
analyzed device, we still cannot determine the provisioning
protocol. We found that most SmartCfg solutions provided
by the chip vendors are only templates for the reference
of device manufacturers. A manufacturer may modify the
template to implement its own provisioning protocol (al-
though this protocol is similar to the original one). To detail
the credentials encoding scheme, analysts are required to
conduct reverse engineering against the code of the smart

home device (i.e., firmware and app) since the source code
is often not provided by the manufacturer. In this case, an
analyst may face binary code of different architectures (ARM,
MIPS, Tensilica, etc.). It is challenging to employ an effective
reverse engineering against the commercial off-the-shelf bi-
nary code. To make things worse, sometimes even the binary
code of a device may not be obtained and the only available
data for analysis is the network traffic. In this situation, re-
covering the credentials encoding scheme requires a more
complex analysis.

3.2 SmartCfg Solution Identification
Weutilize the software development kits (SDKs) of existing SmartCfg
solutions as the prerequisite in our identification. Specifically, SDKs
of SmartCfg can be divided into two categories: device SDK and
mobile app SDK. Device SDKs are provided to facilitate the devel-
opment of device firmware, while mobile app SDKs are integrated
by the smart home app for establishing the device-smartphone
communication. If a device (and its corresponding app) adopts a
certain SmartCfg solution and integrates SDKs of this solution, we
can leverage the feature of SDKs to identify the used solution.

We find that most chip vendors typically provide SDKs with both
source code and documentations on their websites. Hence we could
directly download them as the reference of our analysis. Although
the collected SDKs include both the device SDKs and the mobile
app SDKs, our reverse engineering only focuses on the mobile app
SDKs for two reasons: First, a device SDK is usually used to help
analyze the device firmware. However, if the manufacturer does not
provide the firmware image and the flash memory is protected from
being read, it is often infeasible to obtain the firmware. Moreover,
firmwares of most smart devices are closed-source, and the reverse
engineering of such binary images is often very time-consuming [8].
Second, protocol can be recovered through analyzing the mobile
app SDK only. According to our observation, the communication
protocol between the mobile app and the device can be recovered
by either analyzing the device firmware or the mobile app. Ob-
viously, the analysis of mobile app has the benefit of a series of
well-developed reverse engineering tools.

Briefly, the identification of SmartCfg solutions starts with col-
lecting apps from the app market and downloading mobile app
SDKs from the websites of chip vendors. In order to check whether
a collected app contains certain mobile app SDKs, we utilize lib-
scout [4], a third-party library detector for Java/Android apps, to
run a similarity test between the target app and the jar packages of
the SDKs. We also use the native code library as important refer-
ences. A native code library is usually compiled as a shared library
(.so) and its exported functions are invoked via a Java Native In-
terface (JNI). We collect the exported function names in shared
libraries of the mobile app SDKs as the references (note that we
exclude those short function names and frequently used names
such as getSize). Once the same function names are found in a
native code library of the mobile app, a solution is identified.

3.3 Credential Encoding Scheme Recovering
3.3.1 Code Analysis. After we identify the used SmartCfg solu-

tion in an app, we further conduct a code reverse engineering to

Passwords in the Air: Harvesting Wi-Fi Credentials from SmartCfg Provisioning WiSec ’18, June 18–20, 2018, Stockholm, Sweden

recover the credentials encoding scheme. The reverse engineering
consists of two steps:

Locating Credential Input Activity: To understand the logic of
credential encoding, the Activity (Activity is a component of
Android application, acting as an user interface.) of SSID and pass-
word input in an app is an important index. If this Activity can be
located, the provisioning can then be triggered and the credential
encoding functions can be located. Typically, this Activity obtains
the currently used SSID through the API of Android, and obtains
the Wi-Fi credential with a manual input. Therefore, we utilize
these features to find such Activity in the app. We can search
APIs for SSIDs in Activities which use WifiManager and WifiInfo
to get the current Wi-Fi connection information.

Locating Credential Encoding Functions: Next, we aim to un-
derstand how the app encodes the data after it has obtained cre-
dential. Thus we conduct a forward data flow analysis to track the
transformation of the credential with a modified Android emulator.
We start from the credential variable from the located credential
input Activity, keeping track its propagation until the app sends
a tainted data to external environment (e.g., network). All functions
involved in the data propagation are labeled as encoding functions.
In particular, our analysis checks both Java code and native binary
code. We set the sink of this data flow analysis as the member func-
tion send of DatagramSocket/MulticastSocket classes in Java
code, and send/sendto in native code. After the locating of encod-
ing function, a manual reverse engineering is then conducted by
the analyst to recover the encoding algorithms.

3.3.2 Network Traffic Analysis. Interestingly, we find that, for
many SmartCfg solutions, the credential can be recovered through
even a simple network traffic analysis. The attacker does not have
to obtain the SDK to understand the credential encoding. This is
significant since some smart home device manufacturers modify the
SDK to adopt their proprietary encoding schemes. In the following,
we demonstrate an extraction of credential using network traffic
data only, which indicates that an attacker is still able to conduct
successful credential sniffing even though he cannot obtain the
SDK.

(1) Step-I: Sniffing. To sniff the broadcast data in the air, we
utilize a TL-WN722N USB wireless adapter produced by TP-
Link to capture all 802.11 protocol packets. Then we use the
Scapy python library to parse and record the captured pack-
ets. For the captured data, we use a triplet (source mac ad-
dress, destination mac address, data length) to format them.
Then we only keep the relevant packets with specific ad-
dresses. At the same time, we record the existing SSID and
its corresponding BSSID.

(2) Step-II: Data Payload Locating. For different provision-
ing solutions, the data is encoded with several schemes. By
observing the variances between different packets we can de-
duce the adopted encoding mode. By observing the captured
triplets (source mac address, destination mac address, data
length) we can guess the adopted mode. If the data length
field in the triple is changing, then it is considered as the
payload. Otherwise the payload is stored in the destination

mac address field. For instance, if the destination mac ad-
dress field is in the form of 01:00:5e:xx:xx:xx, then we
can guess the data is encoded in the changing part of the
destination mac address field.

(3) Step-III: CredentialDifferentiating Sincewe have already
located the data payload, next we conduct a differential traf-
fic analysis to locate the position of the used credential in the
packets. We test the app with two passwords of same length
and trigger the provisioning, respectively. By comparing
the changing part of the payloads, we can obtain a differ-
ential. However, the differential often not only contains the
password field, but also a checksum field. To distinguish, we
leverage the fact that if the password is changed slightly (e.g.,
one character is changed), the differential of the password
field will also changes accordingly (since no encryption is
used to protect the password field). However, the checksum
field will change significantly (i.e., each byte is changed).
This features helps us identify the password field effectively.

4 EXPERIMENTAL RESULTS
In this section, we present the results of our security analysis against
a wide range of SmartCfg solutions.

4.1 Solution Identification
The prerequisite of our solution identification is the knowledge
of typical SDKs of SmartCfg solution. We have collected eight
representative SmartCfg solutions from the official websites of
the chip vendors. The summary of those collected SDKs including
SDK for mobile app, SDK for smart device, and corresponding
documents, are listed in Table 2. In Model column of Table 2, we
list out the mainstream chip models of the vendor using SmartCfg
solution. Despite different names used by the solutions but have the
same semantics, such as SmartConfig, SimpleConfig, EasyConfig,
SmartConnection, EasyLink, they are actually implementations
of SmartCfg (up to certain variance and adaption). A mobile app
SDK provides a demo app and Java source code of the app with
jar packages or shared libraries. An SDK for smart device includes
some pre-compiled binary files that provide a basic implementation
of the protocol, including the Wi-Fi provisioning process. Also,
we collect documents related to the SDK, which help understand
details of Wi-Fi provisioning.

After collecting these representative SmartCfg solutions, we
further extract their features and utilize them to identify specific
solutions in real world apps. A typical feature is the existence of
certain library files, which can be found in the jar package or the
lib directory. Since developers seldom change these solution files,
it is feasible to use it as a feature to judge whether one specific
solution is used by a real world product.

With the downloaded SDKs from the official websites, we filter
out apps related to smart home from the largest app market in
China–TencentMyAPP app market [2]. We choose this app market
because China has the most active smart home ecosystem and it is
expected to find more smart home apps here. We developed a web
crawlers to find smart home apps according to an app’s keyword
description. Obviously, the quality of the filtering results depends on
the accuracy of the keyword. Hence we classified the keywords into

WiSec ’18, June 18–20, 2018, Stockholm, Sweden C. Li et al.

Table 2: An overview of eight popular SmartCfg solutions and their SDKs

Solution Model Chip Vendor SDK for Mobile App SDK for Smart Device

EasyLink EMW3060 MXCHIP [18] EasylinkAndroid_Demo [18] MiCOSDK
BroadLinkConfig BL3332-P BroadLink [1] libBroadLinkConfig.so [6] -
Esptouch ESP8266 Espressif [9] EsptouchForAndroid [10] ESP8266_RTOS_SDK
SimpleConfig RTL8723BS Realtek [23] Release_SimpleConfigWizard [22] SDK_Ameba
SmartConnection MTK7681 MediaTek [17] LinkIt Connect 7681 SDK [17] LinkIt Connect 7681 SDK
SmartConfig CC3200 TI [24] SmartConfigCC3X [27] simplelink-cc3220-sdk
DirectConfig NL6621 NuFront [19] NL6621_StandardSDK [20] NL6621_StandardSDK
SmartLink HF-LPX30 Hi-Flying [14] SmartLinkV7 (Android) [14] HF-LPX30-HSF-SDK

SmartConfig
14 (22%)

SimpleConfig
8 (13%)

DirectConfig
2 (3%)

SmartLink
7 (11%)

SmartConnection
7 (11%)

BroadLinkConfig
9 (14%)

EasyLink
6 (9%)

Esptouch
11 (17%)

Figure 3: A percentage breakdown of the SmartCfg app

three categories: (1) smart home products, e.g., smart-plug, smart-
hub, and smart-clock; (2) chip vendors, e.g., Espressif, MXCHIP;
(3) known keywords, e.g., wulianwang (the Chinese pinyin that
corresponds to “Internet of Things”), smarthome, and smartthings.

In order to further improve the keyword search method, we
count the word frequency statistics of the app’s package name and
exclude some irrelevant words. Then we use the top 10 words as
new keywords and iterate the process for three times. This brings
us more relevant apps. Through the process, we obtain 821 smart-
home related apps.

After setting up the crawler and downloading a large number of
apps, we use apktool to decompress the app. Through checking the
unzipped files and comparing them with the features collected from
the SDK in advance, we can determine whether an app contains
a SmartCfg solution mentioned above. A certain feature found
in the app indicates the use of corresponding SmartCfg solution.
Interestingly, we also find that many apps integrate more than one
SmartCfg solutions. Among the 821 smart-home apps, we find 64
apps use SmartCfg solutions mention in Table 2. The distribution of
different SmartCfg solutions among these apps is shown in Figure 3.

4.2 Encoding Scheme Analysis
We analyze the encoding schemes used in the collected SmartCfg
apps especially focusing on their security issues. Since the encoded
information is broadcasted by a smart home app and all smart de-
vices could capture and decode it, an attacker who is eavesdropping
the broadcast can also obtain such information. Hence we check

whether the encoding scheme of the SmartCfg solution protects
the credentials against illegal packet capturing.

We conduct a network traffic analysis against all collected apps to
recover the encoding mode for each SmartCfg solution. Table 3 lists
the result. We find only the SmartConnection solution developed
by MediaTek adopts the DMA encoding mode. Three solutions
(BroadLinkConfig, DirectConfig, and SmartConfig) adopt the DPL
encoding mode while the left four solutions (EasyLink, Esptouch,
smartLink, and SimpleConfig adopt the Hybrid encoding mode.

In addition, we examine the security of each encoding scheme
through conducting a binary code reverse engineering against each
collected app. The purpose of this reverse engineering is to verify
whether the implementation of a concrete SmartCfg solution adopts
a secure encoding scheme. Note that even if the SDK provided by
the vendor does implement a secure (or insecure) encoding scheme,
device manufacturers maymodify it into an insecure (or secure) one.
For instance, in samples of many SDKs the encryption function
is implemented using a constant key. However, a manufacturer
may re-implement this with a randomly generated key. Thus we
should detail the implementation for each app to judge whether
the adopted encoding scheme is secure.

According to our analysis, six out of the eight SmartCfg solu-
tions provided by different chip vendors adopt insecure encoding
schemes. Table 3 gives the detail of the insecure protection. In par-
ticular, four solutions (BroadLinkConfig, DirectConfig, Esptouch,
SmartLink) do not adopt any encryption and directly broadcast the
encoded data, two solutions (EasyLink, SmartConnection) encrypt
the encoded data but they misuse the cipher, and only two solutions
correctly encrypt the encoded data. Hence we guess the flawed so-
lutions may significantly affect the security of those smart home
apps. We then decompile each app with apktool and manually
verify the encoding scheme used by each app.

Based on the code analysis presented in Section 3.3.1, we lo-
cate the encoding function and manually check whether the SSID
and the password are encrypted. If they are sent without being
encrypted, the host app is considered as an insecure one. If they are
encrypted, we further check whether the cipher used to protected
credential is correctly invoked. We check typical crypto misuses
(e.g., constant crypto key, key reuse, key leaking) to find potentially
flawed protection.

Unfortunately, among all analyzed apps, we find that every app
utilizing an SDK with insecure encoding scheme does not enhance
it and thus suffers from a credential eavesdropping attack. Among

Passwords in the Air: Harvesting Wi-Fi Credentials from SmartCfg Provisioning WiSec ’18, June 18–20, 2018, Stockholm, Sweden

the 64 collected apps, 42 apps adopt insecure encoding scheme
of the original SDKs. There are 29 apps (45%) affected by four
solutions (BroadLinkConfig, DirectConfig, Esptouch, SmartLink),
which encode data without encrypting it. Seven apps adopt the
SmartConnection solution provided by MediaTek, and execute the
encryption with hard-coded AES keys. Six apps (9%) use the RC4
cipher to encrypt the payload regulated by the EasyLInk solution
of MXCHIP, but they suffer from the key reuse issue.

What is worse, we find that even the adopted SmartCfg solution
uses a secure encoding scheme, the implementation of the app may
still misuse it. For instance, eight apps that adopt the SimpleConfig
solution use fixed AES keys. We investigate the original solution
and find the key used by the native library of the SDK relies on a
Pin code, which is identical on different devices. However, some
implementations may fail to acquire this Pin code and then they
will use a default code as the keymaterial. In this case, the generated
key is constant and predictable.

In summary, 42 out of 64 analyzed apps (66%) contain insecure
credential encoding schemes and any attacker is able to recover Wi-
Fi credentials from their provisioning procedures. We demonstrate
more details in the following subsection.

Table 3: Encoding modes and protection mechanisms for
SmartCfg solutions

Solution Encoding Mode Protection

SmartConnection DMA AES (hard-coded key)
BroadLinkConfig DPL None
DirectConfig DPL None
SmartConfig DPL AES
EasyLink Hybrid RC4 (key reuse)
Esptouch Hybrid None
SmartLink Hybrid None
SimpleConfig Hybrid AES

4.3 Case Studies
4.3.1 Esptouch. ESP8266 is a low-power, highly integrated Wi-

Fi chip with a Tensilica L106 32-bit microcontroller unit (MCU).
It adopts the Esptouch SmartCfg solution to help users connect
ESP8266EX-embedded devices to a Wi-Fi network. All of the en-
coding algorithms used in this solution are implemented in the
package com.espressif.iot.esptouch.protocol [11].

We describe the original (i.e., prior to encoding) payload format
of Esptouch in Table 4. The apSsidCrc and the apBssidCrc are
the checksums of the SSID and BSSID respectively. The totalXor
is the XOR sum of all the other bytes. The ipAddress is the IP
address of smart home app, to which the device will return the
message. The cumulative error correction algorithm is applied to
the concatenated data fields such that all bytes and their respective
checksums form the payload.

Esptouch encodes the credentials through a hybrid mode, in
which it uses the Destination Address as the index, and then sends
them through the length fields of a sequence of 802.11 packets. As
a result, any attacker can sniff the data packet in the air and obtain
the transmitted data to recover the credentials.

4.3.2 EasyLink. EasyLink is an SDK provided byMXCHIP for
manufacturers and developers. It is designed to facilitate the connec-
tion of the devices to the Wi-Fi network. EasyLink uses pre-share
key stored in devices and apps to encrypt the data during Wi-Fi
Provisioning.

We download the project EasylinkAndroid_Demo from MX-
CHIP’s Github repository [18]. By decompiling the provided Java
package easylinkv3-0.2.1-sources.jar package we can know
all the details about EasyLink. Unfortunately, we find that even
though EasyLink adopts cryptographic algorithms to protect cre-
dentials, the credential can still be decrypted due to the crypto-
graphic misuse. The code of EasyLink (version 3) is showed in
Figure 4, we can see that after receiving SSID and password from
user input, the RC4 cipher is used (in line 3 of the program) to
encrypt SSID and key before the data is sent. However, in this
case there is a typical crypto misuse–key reuse for stream ciphers.
In particular, EasyLink reuses the same RC4 key to encrypt SSID
and password. As a result, the attacker could simply conduct the
XOR operation on the ciphertexts of SSID and password to obtain
the differential of the plaintext. Since the plaintext of SSID is pub-
licly known, password could be recovered easily with the XOR of
differential and SSID plaintext when the SSID is longer than the
password.

4.3.3 HiSmartWifiSet. Developed byBayit HomeAutomation [5],
the Bayit Cam smart home app allows users to keep an eye on
their houses or offices remotely. We identify the native library
(libHiSmartWifiSet.so) from the app package developed byHichip,
which is a variant of theMediaTek SDK since they have multiple
function names in common (InitCtrlPassword, SetCtrlPassword,
etc.). Although we cannot confirmwhether this app adopts the same
data encoding scheme from theMediaTek SDK, we find that this
app uses a DMA encoding mode to send the SSID and password.
Then we disassemble the binary code and find that it uses the AES
cipher to encrypt the encoded data.

Interestingly, we notice that the sample SDK originally provided
by MediaTek uses a hard-coded AES-128 key (MfcwAnwCass2_78p)
for the encryption. We deduce that the sample may mislead third
party developers and repeat the similar mistake. The analysis val-
idates our hypothesis: the Bayit Cam app also uses a hard-coded
key (012345678abcdef) as shown in Figure 5 (which is the pseu-
docode of the StartSmartConnection function decompiled by the
Hex-rays decompiler).

4.3.4 Alink. Alink is a widely used smart home app in China.
Developed by Alibaba Cloud, the leading cloud provider in China.
This app integrates several popular solutions (e.g., SmartLink of Hi-
Flying, BroadLinkConfig of BroadLink) to support as many smart
devices as possible. In this case study, we demonstrate that even
without knowledge of the used encoding algorithm, we can still
recover the credential with a differential analysis of network traffic.

Table 5 gives a concrete example of this network traffic analy-
sis. To employ the analysis, we first trigger the Wi-Fi provisioning
process using three different credentials. We determine the trans-
mitting mode by observing the changes of encoded data. Since the
Destination Addresses of the filtered packets are always fixed and
only the length field changes, the data encoding mode is DPL. Then

WiSec ’18, June 18–20, 2018, Stockholm, Sweden C. Li et al.

Table 4: Encoding protocol used by the Esptouch solution

Data field totalLen apPwdLen apSsidCrc apBssidCrc totalXor ipAddress apPwd apSsid

Data Length (byte) 1 1 1 1 1 4 < 32 < 32

Table 5: An example of the encoded data of the Alink Solution

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Length 0x4e8 0x4e8 0x4e8 0x11d 0x189 0x20d 0x292 0x354 0x3d7 0x44b 0x4cb 0x3e9 0x3e9 0x15b
Data Preamble 15 Fixed 5 10 l o c c Preamble s

Index 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Length 0x199 0x21a 0x29b 0x31c 0x39d 0x41e 0x49f 0x3ea 0x3ea 0x120 0x1a1 0x218 0x28c 0x360
Data ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ Preamble ‘8’ ‘9’ ‘0’ CRC

we try to locate the preamble. As shown in Table 5, the groups
of packet 0-2, 11-12, 21-22 are packets in succession of the same
length and this feature holds for all the three credentials. This is
a very useful feature to determine the preamble. After we locate
the preamble, which indicates the start of the data payload, we
then determine the corresponding credential field and its semantics
using differential traffic analysis. Through changing the length of
SSID and password, we observe that the length of packet packet 3
is the sum of a fixed value (0x10e) and the total length of SSID and
password. In addition, the length of packet 5 is the sum of a fixed
value (0x208) and the length of SSID, and the length of packet 6
is the sum of a fixed value (0x282) and the length of the password.
The actual data is encoded and placed after the packets of encoded
length. We refer to some aforementioned encoding schemes and
confirm that the encoding scheme should work as follows. Packets
with indexes 0 and numbers ending with 1 and 2 are reserved for
the preamble and the rest (those numbered 3-10, 13-20 and so on)
are used to encode the SSID and the password. SSID concatenated
with the password are parsed as an array of bytes, and they are
encoded by their ASCII values plus the respective offset values from
some arithmetic sequence, starting with 0xe8 and incrementing by
0x80 at a time.

4.4 Responsible Disclosure
We have reported discovered flaws to relevant security response
departments prior to submitting our work. According to the re-
sponses, several vulnerabilities have been fixed before this sub-
mission. The purpose of this paper is not to demonstrate concrete
attacks against certain SmartCfg solutions, but to demonstrate how
improper design of the SmartCfg solution affects the security and
privacy of smart home devices. We expect our work could help
security analysts and SmartCfg solution designers conduct more
effective assessment of SmartCfg solutions and thereby provide
better privacy protection.

5 DISCUSSIONS
In this section, we discuss how to implement a secure SmartCfg
solution to defend typical attacks against credential eavesdropping.

Figure 4: Code In EasyLink

1 if (ComHelper.checkPara(rc4key)){
2 // encrypt
3 this.ssid = SinRC4.encry_RC4_byte(Ssid, rc4key);
4 this.key = SinRC4.encry_RC4_byte(Key, rc4key);
5 if(null != Userinfo){
6 issendip = true;
7 this.user_info = SinRC4.encry_RC4_byte(Userinfo,

rc4key);
8 }
9 }

Figure 5: Pseudo-code in libHiSmartWifiSet.so

1 int StartSmartConnection(const char *_ssid, const char *_pwd
, char _encypt){

2 ...
3 strcpy((char *)&gSsid, _ssid);
4 strcpy((char *)&gPwd, _pwd);
5 gEncypt = _encypt;
6 ...
7 memset(&psk, 0, 0x20u);
8 strcpy((char *)&psk, _pwd);
9 v9 = aes_encrypt_init((int)"012345678abcdef", 16);
10 v10 = aes_decrypt_init("012345678abcdef", 16);
11 aes_encrypt(v9, &psk, &e_psk);
12 aes_decrypt(v10, &e_psk, &d_psk);
13 ...
14 }

To ensure the confidentiality of the credential, device manufactur-
ers, cloud platforms, and developers should cooperate to guarantee
the security goal. Hence, we design a SmartCfg solution with three
participants to enhance the provisioning security. In general, our
solution requires the device manufacturers to distribute a unique

Passwords in the Air: Harvesting Wi-Fi Credentials from SmartCfg Provisioning WiSec ’18, June 18–20, 2018, Stockholm, Sweden

identity information (e.g., Device ID) for each device and this infor-
mation can be obtained by the smart home app through a physical
contact (e.g., with a QR code scanning). This identity information
is distributed in the firmware of the smart device when the de-
vice is shipped. Then, a symmetric key (e.g., Device Secret) is
derived from this information and thus both the device and the
smart home app share the key. During the provisioning, the key
is used to protect the credentials. In addition, a cloud server is
introduced to help the device validate the smart home app. We
consider that the identity information may be leaked and thus an
attacker utilizing such information could also connect to the device.
However, when the cloud server is introduced, the attacker could
not forge an authentication token and thus the device could refuse
such connection.

In detail the provisioning procedure of our proposed SmartCfg
solution prototype is depicted in Figure 6. It utilizes the following
steps to guarantee the security of credential broadcast:

(1) The smart home app obtains a Product Key (to identify the
products) and a Device ID (to identify the devices) of the
smart device through a physical contact (e.g., by scanning the
QR code attached to the device). Using the combination of
the Product Key and the Device ID proves that an attacker
could not enumerate information of other devices since the
Device ID is randomly distributed.

(2) The app authenticates itself to a web service deployed by the
manufacturer on the cloud, then sends the obtained device
information (i.e., Product Key and Device ID) to the cloud
server. After that, the cloud server sends back a device UUID
to the app. This UUID is used in the following steps to help
device authenticate the smart home app.

(3) The smart home app generates the encryption key (e.g.,
Device Secret) with HMAC_SHA256 (using the Product Key
and the Device ID as the parameters). Although this crypto
key can be derived by simply scanning the QR code on the
surface of the device, if the attacker could not get close to
the device (e.g., the device is placed in the user’s house), he
cannot eavesdrop the encrypted information. In addition, the
user of the smart device could mask this QR code to protect
the secret physically.

(4) The smart home app encrypts the credentials (password and
the SSID) and the UUID, and uses an encoding scheme (e.g.,
in DMA or DPL mode) to encode the ciphertext. Then the
encoded information is sent with several 802.11 packets.

(5) The device in SmartCfg state captures relevant 802.11 pack-
ets in the air and decode them. Then it tries to decrypt the
information using its shared encryption key(e.g., Device
Secret) stored in the secure storage. If the decrypted infor-
mation is a legal message according to the protocol specifica-
tion, the device obtains the Wi-Fi credential and connects to
corresponding wireless network. Finally, the device verifies
the received UUID by querying the cloud server. If the UUID
is illegal, the device will refuse to be remotely controlled by
the smart home app.

Cloud serverSmart Home App Smart Device

Entering SmartCfg state

1. (Product key, device ID) from QR code

3. Generating encryption key:
HMAC_SHA256(Device_ID, Product Key)

2.a. (User Token, Product Key, Device ID)

2.b. Device UUID

4. Encrypted (WiFi credentials, UUID)

5. UUID verifying message

Figure 6: A prototype of security enhanced SmartCfg solu-
tion

6 RELATEDWORK
6.1 Provisioning Solutions
With the rapid development of the Internet of things, more and
more home begin to introduce intelligent systems and equipment.
After the smart device connect to the Internet, the user can remotely
control the device through the mobile app, which is a typical smart
home network model. An issue to be addressed is how to configure
the network of the smart device without a UI. In this section, we
review some existing Wi-Fi provisioning technologies in the real
product from the market along with their pros and cons:

(1) AP mode is another common provisioning technology. In AP
mode, the credential of AP is defined by the manufacturer and
an embedded web server is included. Then users browse into
the device’s web site and apply theWi-Fi network configuration
via pre-defined local URL or IP address. The device stores the
network credentials and switches AP mode to Station mode,
which indicates that it begins to connect to home network.
However, this brings some problems: during the configuration
process, the mobile Wi-Fi network needs to be switched, some
of the data may be out of date and trigger error messages. More-
over, recently released smartphones check whether the Wi-Fi
network is actually connected to the Internet. If not, it will
disconnect from the given network and enforce cellular data
connection. All the things above could complicate the user ex-
perience, which contradicts the purpose of good usability.

(2) Wi-Fi Protected Setup (WPS) was introduced by the Wi-Fi
Alliance in 2006 as an easy and secure method to provision
devices without knowing the network name and without typ-
ing long passwords. In a standard setup, users cannot connect
a wireless device to a wireless network unless they know the
network name and its password (also known as WPA-PSK key).
Assume that the user wants to connect the device, e.g., a smart
plug, to the user’s wireless network, he must first pick the net-
work to connect to and then enter the correct password on the
device. WPS is enabled only when being supported by both the

WiSec ’18, June 18–20, 2018, Stockholm, Sweden C. Li et al.

device and the router, and this technology is commonly used in
router provisioning.

(3) Other side-channel methods Many provisioning schemes
leverage side-channel information to send credentials. Sending
the credentials through BLE (Bluetooth Low Energy) requires
devices and cell phones support Bluetooth, but this increases
the production cost and could bring new problems. The voice-
activated method enables mobile phone apps to transmit Wi-Fi
credentials through a specific frequency of sound. The QR code
method allows the mobile phone apps to generates a QR code
that encodes the Wi-Fi credentials, and the device scans the QR
code to get access to this device.

6.2 Security Analysis Techniques
We have summarized a number of works in analyzing IoT system
security. In this section, we classify these works into five categories.

6.2.1 Information Collection and Data Mining. First, we need
to collect sufficient relevant information, including the cloud (e.g.,
IoT solutions, communication protocols, security measures), de-
vices (chip features, instruction architecture, memory layout, Flash
model), and Apps. Zhang et al. [31] built a database that searches
through a large amount of online data using semantic analysis to
identify over 3000 IoT-related articles. Then, using machine learn-
ing methods to cluster the collected data, they are able to identify
the the potential IoT security risks and problems that need further
attention.

6.2.2 Device and App SDKs Code Audit. According to our sur-
vey, the IoT cloud platform will usually provide SDKs (e.g., Devices
and Apps SDK) for third-party developers.In the work of [16], the
authors illustrated how the security and privacy of smart home de-
vices are affected by the device SDK. They demonstrated a concrete
analysis mainly using source code audit to show that the design
of smart home solutions they considered was flawed. The key idea
of IoTFUZZER [8] is based upon the observation that most IoT
devices are controlled through their official mobile apps, and those
apps often contain detailed information about the protocol it uses
to communicate with its device. SMARTGEN [32] focuses on the
constraints by using selective symbolic execution and solves them
to trigger the networking APIs. It features a new runtime app in-
strumentation technique that is able to more efficiently instrument
an app and perform an in-context analysis.

6.2.3 Device Firmware Collection. (1) Download from the manu-
facturer’s website or forum.Many IoT devicemanufacturers provide
the latest firmware for download at the official website so users
can manually update the device. Chen et al. [7] developed a web
crawler using the Scrapy framework, with spiders respectively for
each of the 42 vendors whose products include IP cameras, routers,
access points, NAS, smart TV, cable modems, satellite modems, and
even third-party or open-source firmware. (2) Extract the automat-
ically updated package from traffics. Some IoT devices provide a
one-click update or auto-update feature, and we can capture traf-
fics by Wireshark. Giese and Wegemer analyzed the Xiaomi IoT

ecosystem [13] and mounted a Man-in-the-middle attack between
the cloud and device during the processing of firmware update. (3)
Hardware Extraction and Dumping from Devices. Dumping binary
data in memory via serial communication (UART or JTAG) or read-
ing directly from FLASH. Fereidooni [12] connected ST-LINK with
the smartphone’s chip JTAG port to dump the firmware.

6.2.4 Reverse Engineering for cryptographic misuse. After get-
ting the firmware, we are more concerned about whether the
firmware contains the backdoor, as well as the hardcoded pass-
word. Firmalice [25] is a binary analysis framework to support the
analysis of firmware running on embedded devices. They built a
state-of-the-art symbolic execution engine to reveal the presence
of backdoors in a number of embedded devices available on the
market. Shao et al. [26] investigated the cryptographic misuse prob-
lem and finally they concluded the typical cryptographic misuse
include the misuse of cryptographic algorithms, mismanagement
of crypto keys and inappropriate use of encryption modes.

6.2.5 Traffic Analysis for Protocols. To intercept the communi-
cation between the device and the remote server, we usually deploy
an MITM proxy acting as a wireless Internet gateway. After captur-
ing the package, we intend to analyze the semantics of important
fields in private protocols. AUTHSCOPE’s [34] key idea is to use
differential traffic analysis to recognize the protocol fields and then
automatically substitute the fields and observe the server response.
In proprietary protocol analysis, we can also use this method to
determine the semantic information of each field. AUTOFORGE
[33] can forge a valid cryptographically consistent message which
can be consumed by the server. It contains a set of techniques to
automatically infer protocol fields, label response messages, replay
cryptographic function execution, and regenerate request messages.

7 CONCLUSION
This paper studies the security of SmartCfg, a popular technique
for Wi-Fi provisioning. By auditing the SDKs provided by Wi-Fi
chip vendors and analyzing the smart home apps, we conduct a
systematic security analysis against real world smart home devices
equipped with SmartCfg solutions and present an overview of the
ecosystem through analyzing 821 smart home apps. We find that
although SmartCfg effectively facilitates the Wi-Fi configuration,
existing SmartCfg solutions seldom take the protection of creden-
tials into serious consideration and therefore introduce security
threats. We hope that our study can raise the awareness of the
security issues and guide developers of both chips and devices to
build more secure SmartCfg provisioning solutions.

8 ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valu-
able comments and helpful suggestions. This paper is partially
supported by the Key Program of National Natural Science Foun-
dation of China (Grant No.U1636217), the National Key Research
and Development Program of China (Grant No.2016YFB0801200),
and a research grant from the Ant Financial Services Group.

Passwords in the Air: Harvesting Wi-Fi Credentials from SmartCfg Provisioning WiSec ’18, June 18–20, 2018, Stockholm, Sweden

REFERENCES
[1] Broadlink official website. http://www.broadlink.com.cn/pageihc.html. Accessed

February 28, 2018.
[2] Myapp app market. http://android.myapp.com/myapp/searchAjax.htm?kw=

smartconfig&pns=3. Accessed March 5, 2018.
[3] Smarthome - home automation systems, products, kits, hubs. https://www.

smarthome.com/. Accessed March 5, 2018.
[4] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library detection

in android and its security applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 356–367. ACM,
2016.

[5] bayitHome. bayithomeautomation. www.bayithomeautomation.com. Accessed
February 26, 2018.

[6] BroadLink. Library of libbroadlinkconfig. https://github.com/ruifeng2357/Breeze/
blob/master/libs/armeabi/libBroadLinkConfig.so. Accessed February 26, 2018.

[7] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. Towards
automated dynamic analysis for linux-based embedded firmware. In NDSS, 2016.

[8] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. Iotfuzzer: Discovering memory corruptions in iot through app-based
fuzzing.

[9] Espressif. Espressif document. https://www.espressif.com/en/support/download/
documents. Accessed February 27, 2018.

[10] EspressifApp. Esptouchforandroid. https://github.com/EspressifApp/
EsptouchForAndroid/. Accessed February 26, 2018.

[11] EspressifApp. Esptouch_protocol. https://github.com/EspressifApp/
EsptouchForAndroid/blob/master/src/com/espressif/iot/esptouch/protocol/
DatumCode.java. Accessed February 26, 2018.

[12] Hossein Fereidooni, Jiska Classen, Tom Spink, Paul Patras, Markus Miettinen,
Ahmad-Reza Sadeghi, Matthias Hollick, and Mauro Conti. Breaking fitness
records without moving: Reverse engineering and spoofing fitbit. In International
Symposium on Research in Attacks, Intrusions, and Defenses, pages 48–69. Springer,
2017.

[13] Dennis Giese and Daniel Wegemer. Reversing iot xiaomi
ecosystem. https://recon.cx/2018/brussels/resources/slides/
RECON-BRX-2018-Reversing-IoT-Xiaomi-ecosystem.pdf. Accessed March 5,
2018.

[14] High-Flying. Hf low power wifi module user manual. http://www.hi-flying.com/
download-center-1/user-guide-1/download-item-hf-lpx30-user-manual. Ac-
cessed November 23, 2017.

[15] Texas Instruments. Simplelink wi-fi smartconfig technology. http://www.ti.
com/tool/SMARTCONFIG?keyMatch=smartconfig&tisearch=Search-. Accessed
February 28, 2018.

[16] Hui Liu, Changyu Li, Xuancheng Jin, Juanru Li, Yuanyuan Zhang, and Dawu
Gu. Smart solution, poor protection: An empirical study of security and privacy
issues in developing and deploying smart home devices. In Proceedings of the
2017 Workshop on Internet of Things Security and Privacy, pages 13–18. ACM,
2017.

[17] MediaTek. Mediatek linkit connect 7681 developer’s guide. https://docs.labs.
mediatek.com/resource/linkit-connect-7681/en/documents. Published Mar 12,
2016.

[18] MXCHIP. Easylinkandroid_demo. https://github.com/MXCHIP/
EasylinkAndroid_Demo/. Accessed February 26, 2018.

[19] NufrontIOT. Nl6621 sdk user manual. https://github.com/NufrontIOT/NL6621_
StandardSDK/blob/master/Document. Accessed February 26, 2018.

[20] NufrontIOT. Nl6621_standardsdk. https://github.com/NufrontIOT/NL6621_
StandardSDK. Accessed February 26, 2018.

[21] Kenneth G Paterson, Bertram Poettering, and Jacob CN Schuldt. Plaintext re-
covery attacks against wpa/tkip. In International Workshop on Fast Software
Encryption, pages 325–349. Springer, 2014.

[22] Realtek. Android_simpleconfigwizard. https://www.amebaiot.com/cn/
standard-sdk-simple-config/. Accessed February 26, 2018.

[23] Realtek. Realtek ameba user manual. https://www.amebaiot.com/cn/
ameba-sdk-download/. Accessed February 26, 2018.

[24] Gil Reiter. A primer to wi-fi® provisioning for iot applications. Texas Instruments
White Paper, 2014.

[25] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. Firmalice-automatic detection of authentication bypass vulner-
abilities in binary firmware. In NDSS, 2015.

[26] Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, and Shi Chenjie. Modelling
analysis and auto-detection of cryptographic misuse in android applications. In
Dependable, Autonomic and Secure Computing (DASC), 2014 IEEE 12th International
Conference on, pages 75–80. IEEE, 2014.

[27] TI. Smartconfigcc3x. http://www.ti.com/wireless-connectivity/
simplelink-solutions/wi-fi/tools-software.html. Published February 26,
2018.

[28] Mathy Vanhoef and Frank Piessens. All your biases belong to us: Breaking rc4 in
wpa-tkip and tls. In USENIX Security Symposium, pages 97–112, 2015.

[29] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing nonce
reuse in wpa2. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1313–1328. ACM, 2017.

[30] wikipedia. Wi-fi protected access. https://en.wikipedia.org/wiki/Wi-Fi_
Protected_Access. Accessed February 28, 2018.

[31] Nan Zhang, Soteris Demetriou, Xianghang Mi, Wenrui Diao, Kan Yuan, Peiyuan
Zong, Feng Qian, XiaoFeng Wang, Kai Chen, Yuan Tian, et al. Understanding
iot security through the data crystal ball: Where we are now and where we are
going to be. arXiv preprint arXiv:1703.09809, 2017.

[32] Chaoshun Zuo and Zhiqiang Lin. Smartgen: Exposing server urls of mobile
apps with selective symbolic execution. In Proceedings of the 26th International
Conference on World Wide Web, pages 867–876. International World Wide Web
Conferences Steering Committee, 2017.

[33] Chaoshun Zuo, Wubing Wang, Zhiqiang Lin, and Rui Wang. Automatic forgery
of cryptographically consistent messages to identify security vulnerabilities in
mobile services. In NDSS, 2016.

[34] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. Authscope: Towards auto-
matic discovery of vulnerable authorizations in online services. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 799–813. ACM, 2017.

 http://www.broadlink.com.cn/pageihc.html
http://android.myapp.com/myapp/searchAjax.htm?kw=smartconfig&pns=3
http://android.myapp.com/myapp/searchAjax.htm?kw=smartconfig&pns=3
https://www.smarthome.com/
https://www.smarthome.com/
www.bayithomeautomation.com
https://github.com/ruifeng2357/Breeze/blob/master/libs/armeabi/libBroadLinkConfig.so
https://github.com/ruifeng2357/Breeze/blob/master/libs/armeabi/libBroadLinkConfig.so
https://www.espressif.com/en/support/download/documents
https://www.espressif.com/en/support/download/documents
https://github.com/EspressifApp/EsptouchForAndroid/
https://github.com/EspressifApp/EsptouchForAndroid/
https://github.com/EspressifApp/EsptouchForAndroid/blob/master/src/com/espressif/iot/esptouch/protocol/DatumCode.java
https://github.com/EspressifApp/EsptouchForAndroid/blob/master/src/com/espressif/iot/esptouch/protocol/DatumCode.java
https://github.com/EspressifApp/EsptouchForAndroid/blob/master/src/com/espressif/iot/esptouch/protocol/DatumCode.java
https://recon.cx/2018/brussels/resources/slides/RECON-BRX-2018-Reversing-IoT-Xiaomi-ecosystem.pdf
https://recon.cx/2018/brussels/resources/slides/RECON-BRX-2018-Reversing-IoT-Xiaomi-ecosystem.pdf
http://www.hi-flying.com/download-center-1/user-guide-1/download-item-hf-lpx30-user-manual
http://www.hi-flying.com/download-center-1/user-guide-1/download-item-hf-lpx30-user-manual
http://www.ti.com/tool/SMARTCONFIG?keyMatch=smartconfig&tisearch=Search-
http://www.ti.com/tool/SMARTCONFIG?keyMatch=smartconfig&tisearch=Search-
https://docs.labs.mediatek.com/resource/linkit-connect-7681/en/documents
https://docs.labs.mediatek.com/resource/linkit-connect-7681/en/documents
https://github.com/MXCHIP/EasylinkAndroid_Demo/
https://github.com/MXCHIP/EasylinkAndroid_Demo/
https://github.com/NufrontIOT/NL6621_StandardSDK/blob/master/Document
https://github.com/NufrontIOT/NL6621_StandardSDK/blob/master/Document
https://github.com/NufrontIOT/NL6621_StandardSDK
https://github.com/NufrontIOT/NL6621_StandardSDK
https://www.amebaiot.com/cn/standard-sdk-simple-config/
https://www.amebaiot.com/cn/standard-sdk-simple-config/
https://www.amebaiot.com/cn/ameba-sdk-download/
https://www.amebaiot.com/cn/ameba-sdk-download/
http://www.ti.com/wireless-connectivity/simplelink-solutions/wi-fi/tools-software.html
http://www.ti.com/wireless-connectivity/simplelink-solutions/wi-fi/tools-software.html
https://en.wikipedia.org/wiki/Wi-Fi_Protected_Access
https://en.wikipedia.org/wiki/Wi-Fi_Protected_Access

	Abstract
	1 Introduction
	2 Background
	2.1 Smart Home
	2.2 SmartCfg Provisioning

	3 Security Analysis of SmartCfg
	3.1 Threat Models and Challenges
	3.2 SmartCfg Solution Identification
	3.3 Credential Encoding Scheme Recovering

	4 EXPERIMENTAL RESULTS
	4.1 Solution Identification
	4.2 Encoding Scheme Analysis
	4.3 Case Studies
	4.4 Responsible Disclosure

	5 DISCUSSIONS
	6 RELATED WORK
	6.1 Provisioning Solutions
	6.2 Security Analysis Techniques

	7 Conclusion
	8 ACKNOWLEDGMENTS
	References

