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Abstract—Smart contracts, programs running on blockchain
systems, leverage diverse decentralized applications (DApps).
Unfortunately, well-known smart contract platforms, Ethereum
for example, face serious security problems. Exploits to contracts
may cause enormous financial losses, which emphasize the
importance of smart contract testing. However, current exploit
generation tools have difficulty to solve hard constraints in
execution paths and cannot simulate the blockchain behaviors
very well. These problems cause a loss of coverage and accuracy
of exploit generation.

To overcome the problems, we design and implement ETH-
PLOIT, a smart contract exploit generator based on fuzzing.
ETHPLOIT adopts static taint analysis to generate exploit-
targeted transaction sequences, a dynamic seed strategy to pass
hard constraints and an instrumented Ethereum Virtual Machine
to simulate blockchain behaviors. We evaluate ETHPLOIT on
45,308 smart contracts and discovered 554 exploitable contracts.
ETHPLOIT automatically generated 644 exploits without any
false positive and 306 of them cannot be generated by previous
exploit generation tools.

Index Terms—smart contract, fuzzing, exploitation

I. INTRODUCTION

Blockchain-based cryptocurrency systems gain great popu-
larity in the past several years, standing at an overall mar-
ket capitalization of 170 billion dollars in April 2019 [1].
Ethereum [2], for example, is the second-largest blockchain
system and cryptocurrency after Bitcoin [3] by overall mar-
ket value [1]. Ethereum develops Bitcoin’s scripts, a piece
of stack-based code performing some simple checks before
currency transfer, to a Turing-complete on-chain programming
language called smart contract. As a result, more than cryp-
tocurrency, Ethereum serves as a platform for decentralized
applications (i.e., DApps) based on smart contracts, such
as tokens, gambling, auction, etc. The website State of the
DApps [4] records over 2,200 active DApps, over 85% of
which come from Ethereum. In fact, Ethereum had hosted over
one million smart contracts by the end of 2018 [5].

As the smart contract develops, security vulnerabilities of
Ethereum smart contracts become a serious problem. The
Turing-complete language makes smart contracts more error-
prone than Bitcoin’s scripts and several vulnerabilities have
been discovered [6]. Because of the nature of cryptocurrency,
smart contracts usually involve flows of ETH, the virtual
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currency in Ethereum which is also valuable in the real world.
Therefore, when attackers make use of vulnerabilities, the
currency is illegally manipulated. In fact, real-world attacks
such as DAO [7] and Parity Multisig Wallet [8] have caused
a tremendous crisis for Ethereum. What is worse, smart
contracts are unmodifiable after on-chain deployment and the
damage of attacks is almost irretrievable.

One major research goal for smart contracts vulnerability
is how to fulfill an accurate vulnerability detection. Existing
detection techniques [9]–[12] often suffer from both false
negative and false positive. To verify a detected vulnerability,
a typical method is to generate an exploit to test whether
the vulnerability can be actually triggered. Current exploit
generation for smart contracts generally applies symbolic
execution method [13], [14]. Teether [13], for instance, locates
potential dangerous operations and solves an execution path
triggering the operation using SMT solvers. However, such a
workflow of symbolic execution faces two challenges. The first
one is Unsolvable Constraints, which indicates the execution
of sensitive operations (e.g., currency transfer, self-destruction)
is restricted by conditions that are difficult for existing tools to
pass. Unsolvable Constraints is a major obstacle for symbolic
execution. A prominent case is the validity check of hash
value before currency transfer. For instance, teether tries to
jump over a hash instruction but cannot present value relation
between hash pre-image and hash value, which does not
help to pass cryptographic checks in many scenarios. Our
observation on 49,522 contracts collected from etherscan [5]
demonstrates that these complicated conditions are common
as 20% (9,694) contracts contain cryptographic functions. In
this situation, the corresponding exploit is not able to be
generated. Another challenge for current techniques is how to
handle Blockchain Effects. Blockchain properties (e.g., times-
tamp and block number) are variables used in the contracts,
which represent information about objects (e.g., block) in the
blockchain system. Current exploit generation tools regard
blockchain properties as normal global variables. However,
these properties have their meaning in the blockchain system
and their value has a specific range. If not handled properly,
it is also infeasible to generate an exploit successfully.

To respond to the above challenges, in this paper, we
utilize fuzzing to generate exploits. Compared with symbolic
execution, fuzzing does not need to mathematically solve
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execution paths but generates input candidates to scan the
paths, therefore bypasses the dilemma of symbolic execution.
In addition, it is easier for a fuzzing framework to simulate
blockchain behaviors with runtime instrumentation. We im-
plement ETHPLOIT, a smart contract exploit generator, which
basically generates transaction sequences to test whether the
subject contract is exploitable. To address the problem of
Unsolvable Constraints, ETHPLOIT adopts a dynamic seed
strategy to make use of runtime values as feedback, so that
finds the solution of cryptographic functions from execution
histories. To simulate Blockchain Effects, ETHPLOIT leverages
an instrumented Ethereum Virtual Machine (EVM) to provide
custom configurations, such as setting timestamps and revert-
ing external calls. In addition, to minimize search space and
make the fuzzing process more efficient, ETHPLOIT deploys
a taint analysis to guide transaction sequence generation and
rules out invaluable test candidates in the first place.

We evaluate ETHPLOIT with 45,308 on-chain Ethereum
contracts, and discovered 554 contracts can be exploited
successfully. ETHPLOIT automatically generated 644 exploits
for those contracts without any false positive and toke less
than two seconds to generate each exploit on average.

In comparison, existing exploit generation tools (Teether
and MAIAN) only generate a subset (334) of exploits. Specif-
ically, ETHPLOIT generates 112 exploits against Exposed
Secret, a class of vulnerability involving hash functions and
thus the existing tools label them as “unexploitable”. The
results demonstrated that ETHPLOIT significantly improved
the exploit generation technique against smart contracts and
developers could leverage our tool to build more secure code.

In summary, we make the following contributions:
1) We summarized two major challenges, Unsolvable Con-

straints and Blockchain Effects, in smart contract exploit
generation, and proposed a corresponding solution (i.e.,
a fuzzing approach) to address them.

2) We design and implement ETHPLOIT to fulfill our
fuzzing guided exploit generation. ETHPLOIT makes
use of three key techniques (taint constraints, EVM
instrumentation, and dynamic seed strategy) and is able
to achieve a more effective exploit generation.

3) By utilizing ETHPLOIT, we discovered 544 vulnerable
contracts from Ethereum blockchain and generated 644
valid exploits for them, among which 306 exploits are
not discovered by previous tools.

II. SMART CONTRACT SECURITY ISSUES

In this section, we first define some important concepts used
in this paper. Then, we introduce the existing smart contract
exploits and the corresponding discovered vulnerabilities.

A. Definitions

Definition 1: Solidity variables. Solidity defines four types
of variables according to their purposes:
• Local variable. The variable declared in a function that

is destructed when the function returns.

• State variable. The variable declared globally that indi-
cates the state of the contract.

• Function argument. The variable declared as an input of a
function that is provided by the sender of the transaction.
Such variables are usually untrustworthy.

• Blockchain property. The variable representing properties
of blockchain system that contains three types of vari-
ables, message properties (e.g., msg.sender), transac-
tion properties (e.g., tx.origin), and block properties
(e.g., block.timestamp) [2].

Definition 2: Transaction refers to an Ethereum transaction
invoking the execution of a smart contract. Each transaction
consists of four elements: a sender, a receiver (i.e. the address
of the target contract), a value (i.e., amount of currency),
and a data section containing a called function with its
corresponding arguments.

Definition 3: Test case refers to a sequence of transactions.
Each transaction in the test case is executed sequentially in
positive order. If the test case identifies a vulnerability, itself
represents a valid exploit.

B. Exploitation of Smart Contract

Vulnerabilities of smart contract platforms could happen
at the blockchain level, EVM level, and contract level [12].
We focus the contract-level vulnerabilities. Through smart
contract vulnerabilities, attackers are able to exploit them
gaining control of assets or causing damages. According to
the cause of damages, we classify smart contract exploits into
three categories [13], [14]:

1) Balance Increment. Contracts send currency to arbitrary
accounts. Attackers conduct value transfer to gain profits
from contracts by controlling target contracts.

2) Self-destruction. Ethereum contracts implement a special
operation of destroying themselves. Such a dangerous
operation cannot be accessible by attackers.

3) Code Injection. There are operations importing codes
from external contracts. Then attackers are allowed to
inject arbitrary malicious code into the execution if they
have the control of such external contracts.

We observe that the three categories of exploits usually
cause an external call: currency transfer, self-destruction, and
execution of external code, respectively. To trigger a successful
exploit using a test case, two requirements should be followed:
1) a critical transaction, whose execution exploit contract
vulnerabilities, must have at least one execution path to trigger
one of the vulnerable external function calls; 2) a set of
transactions must be executed to modify states of the contract
before the critical transaction does.

C. Smart Contract Vulnerabilities

We introduce three types of vulnerability, where two types,
Unchecked Transfer Value, and Vulnerable Access Control,
are discovered by previous smart contract exploit generation
tools [13] [14]. Another type, Exposed Secret, is a newly iden-
tified vulnerability for which previous smart contract exploit
generation tools cannot generate valid exploits.
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1 contract NewSmartPyramid {
2 function withdraw() notOnPause public {

3 if ( block.timestamp >= x.c(msg.sender
) + 10 minutes) {

4 uint _payout = (x.d(msg.sender).
mul(x.getInterest(msg.sender))
.div(10000)).mul(

block.timestamp .sub(x.c(msg.
sender))).div(1 days);

5 x.updateCheckpoint(msg.sender);
6 }
7 if (_payout > 0)
8 msg.sender.transfer(_payout);
9 }

10 }

Listing 1: A contract with block timestamp for investment.

1 contract HOTTO is ERC20 {

2 owner = msg.sender;
3 function HT() public {

4 owner = msg.sender;
5 distr(owner, totalDistributed);
6 }

7 function withdraw() onlyOwner public {

8 address myAddress = this;
9 uint256 etherBalance = myAddress.

balance;
10 owner.transfer(etherBalance);
11 }
12 }

Listing 2: A contract with Bad Access Control vulnerability

1) Unchecked Transfer Value: It describes the amount of
currency transfer without being constraint including two types
of implementations.

First, misuse of this.balance. It indicates that the total
transfer balance is not being checked by a contract, which
causes economic losses.

Second, unlimited profit. A large number of smart contracts
provide users with high-yield investments in the form of tokens
or games. It helps attackers to gain unlimited profits if they ma-
nipulate the calculation of rewards. For example in Listing 1,
since _payout is dependent on block.timestamp (Line
5) and it is allowed to be transferred without any constraints
(Line 10), an attacker can gain any profits as long as the
contract balance is not exceeded.

2) Vulnerable Access Control: It represents that an attacker
can bypass access control or grant privileges to conduct sensi-
tive operations, such as currency transfer and self-destruction.
Consider Listing 2 as an example, by executing public function
HT, which changes original owner to msg.sender with no
checks (Line 4), an attacker can bypass onlyOwner checking
(Line 7) to withdraw all currency in contract.

3) Exposed Secret: It represents that an attacker can pro-
vide a secret value, which should be private to attackers, to
access sensitive operations. Contracts with this vulnerability
usually work as an application of gambling, quiz, gift and so
on. Typical contracts of this type include two main functions:
One is Secret Setter. The function sets the secret value and
store the secret (or some transformation of the secret) in the
contract state variables. The other one is Secret Checker which

Fig. 1: A gaming contract with hash function.

accepts some proofs to verifies whether the sender knows the
secret and then execute sensitive operations such as currency
transfer or writing state variables.

Unluckily, because of the openness of blockchain, attackers
can inspect the secret by observing the data of previous
transactions and then break the secret checking. The Game
contract in Figure 1 is a typical example. The secret setter
StartGame stores the hash value of the secret value, which is
a common approach to handle passwords. However, the plain
text of the secret response is a transaction argument, which
is recorded publicly in the blockchain. Formally, if any secret
value appears in the contract execution as plain text, the secret
value can be conducted from past transactions and we regard
this contract is vulnerable for Exposed Secret.

III. MOTIVATION

In this section, we list challenges to exploit smart contract
vulnerabilities and propose our approaches to address the
corresponding challenges.

A. Challenges of Smart Contract Exploit Generation

By analyzing previous smart contract exploit generation
tools [13] [14], we summarized two challenges for exploit
generation, Unsolvable Constraints and Blockchain Effects.

1) Unsolvable Constraints: Sensitive operations in smart
contracts are commonly restricted by conditions such as va-
lidity check of a hash value. Thus, solving such constraints is
necessary for generating exploits. Previous tools (e.g., Teether,
Mythril) rely on SMT solvers to address path constraints.
However, SMT solvers cannot solve the constraint if it involves
complicated operation like hash (opcode SHA3). Although
some improvements are made in Teether (e.g., iterative con-
straint solving), path constraints cannot be solved completely.

Figure 1 demonstrates an example with a cryptographic
constraint (Line 7). Operation transfer (Line 8) is trig-
gered if the value of responseHash equals to the re-
turn value of the hash function keccak256. Variable
responseHash is assigned by hash function keccak256
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in function StartGame (Line 13), which is unable to be
traced by previous tools.

2) Blockchain Effects: Blockchain effects of blockchain
system such as blockchain properties affect the execution
of smart contracts. An attacker may control the blockchain
effect and execute sensitive operations (e.g., transfer)
if they are dependent on the blockchain effect. To exploit
such vulnerability, the blockchain effect is required to be
implemented reasonably. For instance, the timestamp must be
represented as the current time or recent time, instead of an
exaggerated time. For example, the contract shown in Listing 1
demonstrates a transfer correlated to a blockchain effect, i.e.,
block.timestamp. Variable _payout is the amount of
transfer (Line 10) and it is assigned by a calculation, which
includes block.timestamp (Line 5). If selecting a proper
timestamp, attackers can gain profit from the contract. The
current exploit generation tool, Teether, generates an invalid
timestamp to exploit this vulnerability without considering the
syntax of the block.timestamp.

B. Approaches for Challenges

Fuzzing [15] is an automated software testing technique
which is commonly used to generate exploits for security-
critical programs. In order to fuzz smart contracts for exploit
generation, we apply a smart contract specific fuzzer which
targets on exploitation. To address the above challenges, we
leverage the following approaches to fuzzer:

Feedback of runtime values. We record the runtime values
of arguments and variables to solve the defect of Unsolvable
Constraints. Initially, we create a blank seed set for each
argument of each function. According to the execution of
previous transactions, we update the seed set of each func-
tion argument by adding runtime values, including previous
function arguments, state variables and so on. We then apply
the seeds as the feedback to generate arguments for the next
transaction to execute. In this way, the feedback indicates the
execution history and current state of the contract, which helps
to generate valuable exploits. With the hash input recorded in
the seed set, we can pass the validity check of the hash value,
which is the most challenging case of Unsolvable Constraints.

Manipulation of blockchain execution. We propose to
instrument the execution environment of smart contracts to
support configurable executions, which means we can freely
set the value of blockchain properties to solve Blockchain
Effects. For example, we can configure each transaction ex-
ecution by setting specific block timestamp which is realistic
while able to exploit vulnerabilities, therefore explore more
possibilities of contract execution.

IV. ETHPLOIT: SMART CONTRACT FUZZER

We design ETHPLOIT, a fuzzer for exploiting smart con-
tracts automatically. Figure 2 depicts the workflow of ETH-
PLOIT, which consists of five steps:

1) Static Analysis. Given Solidity code of smart contracts,
ETHPLOIT compiles the code to extract the Application
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Fig. 2: Workflow of ETHPLOIT: (1) Static analysis; (2) Test case
generation; (3) Test case execution; (4) Trace analysis; (5) Feedback
handling.

Binary Interface (ABI) and the bytecode. It also applies
taint analysis to extract dependencies among variables.

2) Test Case Generation. ETHPLOIT initially generates
a test case. Instead of providing any predefined code
patterns, ETHPLOIT conducts fuzzing to optimize the
test case. The test case is further updated based on the
static analysis results and feedback results generated by
the previous round of fuzz test.

3) Test Case Execution. ETHPLOIT instruments an EVM
to simulate blockchain effects. It further applies each
test case on the instrumented EVM and output execution
traces. The traces cover more execution probabilities
because of the instrumentation.

4) Trace Analysis. ETHPLOIT analyzes each execution
trace. If the exploit detector identifies an exploit, ETH-
PLOIT reports the current test case as a valid ex-
ploit. Meanwhile, coverage guider constructs feedback
for optimizing the test case. ETHPLOIT distinguishes
the feedback into two categories: function reward for
modifying function distribution and valuable seeds for
updating dynamic seed sets.

5) Feedback Handling. ETHPLOIT regards the function
reward as function distribution for test case generator
to select functions that are more likely to exploit vul-
nerabilities by the experience of past fuzzing iteration.
Feedback handler also adds valuable seeds into seed sets
which can be used to generate arguments able to address
some strict constraints.

ETHPLOIT executes Step (2) - Step (5) repeatedly until the
total amount of the generated test cases exceeds a threshold.

To implement the approaches stated in Section III-B, ETH-
PLOIT proposes three key techniques:

Dynamic Seed Strategy. The feedback of runtime values is
the seeds in ETHPLOIT, which guides argument generation for
each transaction. Under a dynamic seed scheduling assisted by
taint analysis, seeds are precisely fed into specific arguments.

EVM Instrumentation. To provide light-weight blockchain
manipulation, ETHPLOIT deploys an instrumented EVM envi-
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ronment that works the same as the official EVM and leverages
instrumentation to simulate blockchain effects.

Taint Constraints of Test Case Generation. To minimize
the search space of fuzzing, we only generate valuable test
cases based on taint analysis. ETHPLOIT makes sure that the
functions of each test case have internal dependencies.

A. Static Analysis

Taking the source code of each contract (i.e., Solidity
program) as input, ETHPLOIT first compiles the source code
and applies taint analysis to learn the dependencies of variables
from the source code.

1) Solidity Compiler: ETHPLOIT uses the solidity com-
piler, solc [16], to extract its bytecode and ABI. The bytecode
is used for deploying the contract in test case execution. ABI
is taken as the input of test case generation.

2) Taint Analyzer: As each processed transaction may
modify states of the contract, ETHPLOIT applies static taint
analysis to discover dependencies of modifying contract states.

Our taint analyzer is built on top of Slither [17], which is
an open-source static analyzer for parsing the smart contract
source code. The taint analyzer proceeds the following steps
to extract dependencies in a smart contract.
Control Flow Graph Generation. The taint analyzer first
creates a Control Flow Graph (CFG) for each function, where
each node is a Solidity expression (e.g., assignments, function
calls, branch operations) and each edge connecting two nodes
that are executed sequentially. From each CFG node, we can
extract a set of read variables and a set of written variables.
First, the analyzer creates an ENTRY node and an EXIT node
to represent the beginning and the end points, respectively.
It then parses the function and extracts conditional branches
such as IF and FOR. For each conditional branch, the analyzer
follows its execution sequence of expressions to construct a
graph. Analyzer finally connects all graphs to generate a CFG.
Taint Source and Sink Labeling. Given the CFG of a
function, analyzer labels taint sources and sinks by analyzing
the expression of each node.

The analyzer labels state variables, function arguments, and
blockchain properties as taint sources. These variables are a
potential risk, as values of these variables are directly/indi-
rectly assigned by the sender of the transaction. It then marks
state variables and external calls (i.e., send, transfer, call,
callcode, delegatecall, selfdestruct) as taint sinks. Due to the
contract states stored in state variables are not destructed when
the function returns, it is essential to continue tracking the
states through state variables. Besides, external calls are the
only trigger to explore smart contract exploits. These taint
sources and sinks are used for further taint propagation.
Taint Propagation. According to the labeled taint sources and
sinks, the taint analyzer learns how tainted value propagates in
the function. Hence, the analyzer proceeds taint propagation
by analyzing the dependencies of variables. Since we only
consider the tainted value propagation, we extract variable-
level dependencies, which are defined below:

1) Variable-Data Dependency. A variable v1 is variable-
data dependent on a variable v2 if the value of v1 is
assigned by v2 such as v1 = v2 + 1.

2) Variable-Control Dependency. A variable v1 is variable-
control dependent on a variable v2 if the expression
with v1 is control dependent on the expression with v2.
Consider code if(v2! = 0){v1 = v1+1; } as an example,
v1 is variable-control dependent on v2.

Starting from the ENTRY node in the CFG, the taint analyzer
traverses the CFG iteratively and propagates taint on nodes.
The propagation takes three steps on each CFG node:

1) Initialize taint status. If the CFG node has no predeces-
sors, the analyzer initially creates a flow set for each taint
source, represented as Taint(src)← {src}. Otherwise,
the analyzer creates Taint of the current node by taking
the union of predecessors’ Taint. Taint indicates the
status of taint propagation at the current node.

2) Extract immediate dependencies. In the Solidity expres-
sion of the current node, written variables are variable-
data dependent on read variables. Also, the analyzer
locates CFG nodes that the current node is control
dependent on. Written variables of the current node are
variable-control dependent on read variables of these
control dependent nodes.

3) Update taint status. For each extracted dependency in
step 2, v1 is variable-dependent on v2 for example, the
analyzer inserts v1 to the flow set of sources that taints
v2, namely, for each src, Taint(src) ← Taint(src) ∪
{v1} iff v2 ∈ Taint(src).

After proceeding propagation on each CFG node, We get the
Taint of the EXIT node, denoted by TaintEXIT , as the taint
analysis result of current function. A source src taints a sink
sink if sink ∈ TaintEXIT (src).

B. Test Case Generation

Test case generator takes the results of ABI and depen-
dencies of variables as input, it then creates a test case to
exploit smart contract vulnerabilities. In order to prevent the
involvement of manual efforts, generator optimizes the test
case through fuzzing, instead of manually defined patterns.

A test case is generated in the format of I =
(tx1, tx2, . . . , txK), where txi is a transaction. We first in-
troduce a representation of Taint Relation Graph depicting
dependencies among variables in one test case. The gener-
ator then takes the following three steps to generate a test
case: Function Selection, Argument Generation, and Property
Generation. Details are introduced below.

1) Taint Relation Graph: The generator aims to optimize
the test case by analyzing how attackers’ inputs affect the
execution of exploits. First, since the test case is a sequence of
transactions, we need to learn dependencies among the func-
tion sequence more than in-function dependencies. Second, we
only focus on dependencies that are relevant to exploitation.
To achieve the above goals, for each test case, generator
constructs a Taint Relation Graph that helps function selection
(Section IV-B2) and dynamic seed feeding (Section IV-E).
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Each node in the Taint Relation Graph is taint sources or
taint sinks. A directed edge represents a dependency from
one taint source to one taint sink. A state variable, which
is globally used in one contract, can be one node though
it is referred to in various functions. Rather than analyzing
all variable dependencies in the test case, the generator only
selects those that are related to external calls because external
calls are the only way to trigger exploits. Given a test case
and variables dependencies extracted from taint analysis, the
generator traverses the transaction sequence from txK to tx1

for constructing a Taint Relation Graph:
1) For txK , the generator finds all sources that taint exter-

nal calls. It adds edges from sources to calls. Among
these sources, the generator selects state variables and
puts them into a set called Target Sinks.

2) From txK−1 to tx1, for each transaction, generator finds
out all sources that taint any state variables in Target
Sinks. The generator further adds edges from the sources
to the sinks and updates Target Sinks by adding state
variables from these sources.

Given Taint Relation Graph of the test case, if there is a
path from a taint source to any external call in txK , we can
learn that the source (indirectly) taints the calls and is valuable
to fuzz for exploit discovery.

Taken the Figure 1 as an example, where solid arrows
denote the edges and dotted lines connect the same variables,
generator analyzes the test case (tx1, tx2) where tx1 calls
StartGame and tx2 calls Try. Generator first identifies an
external call transfer in function Try, which is variable-
control dependent on a state variable responseHash. Gen-
erator then regards responseHash as a sink and further
explores that it is directly variable-data dependent on a
function argument _response in function StartGame.
The Taint Relation Graph is updated as _response →
responseHash → transfer, which indicates that
_response in StartGame is valuable to fuzz.

2) Function Selection: To generate an executable test case,
the first step is to select K functions from the contract for the
K transactions, respectively.

Only non-static callable functions are suitable for transac-
tion generation. First, the function must be public and callable,
otherwise, it cannot be triggered by any transaction calls. Sec-
ond, the function must be non-static, which contains external
calls or operations to modify state variables, otherwise, it is
useless for exploitation.

After removing improper functions, generator selects func-
tions from txK to tx1. For each transaction txi (1 ≤ i ≤ K),
we take the following two steps to select txi’s function txi.f .

Candidate selection based on dependencies. While prepar-
ing to choose txi.f , generator takes the Taint Relation Graph
of txK to txi+1 and the corresponding Target Sinks as input.
If the graph can be extended by one function, the generator
adds the function to a set of candidates. More specifically,
if i = K, the function is the one with at least one external
function call. If i < K, the function is the one including inputs
which indirectly taint the external calls in txK−1.

Function selection based on probability distribution. The
generator then randomly selects a function from the candi-
dates with a probability distribution. Basically, the distribu-
tion mappings functions to positive numbers, whose value is
based on execution feedback. Given the distribution P and
function candidates F , a function f ∈ F has a probability of
P (f)/

∑
i∈F P (i) to be selected. Details of P is illustrated in

Section IV-D1. Finally, txi.f is the selected function.
3) Function Arguments Generation: After the function se-

lection, the generator fills in arguments and block properties of
each transaction to make it executable. In general, arguments
are generated from two sources: pseudo-random generator
and seeds. For the predefined probability p, it indicates that
each argument has a probability p to be generated randomly.
Besides, probability 1−p is to use the value of one seed from
the corresponding seed set.

Random generation is based on types of arguments, which
are divided into static-size (e.g., uint256 and bytes32)
and dynamic-size (e.g., arrays). For static-size arguments, the
pseudo-random generator produces random values within the
input domain. For example, range from 0 to 2256 − 1 for
uint256 type. For dynamic-size arguments, since elements
of them are static-size in Solidity version 0.4, the generator
first randomly selects a valid number as the length and then
generates each static-size element.

On the other hand, the generator has a dynamic variable-
specific seed strategy, which means that each argument in each
function has a seed set. All seed sets are initialized with an
empty set and new seeds are added into seed sets after the
execution of transactions (details are in Section IV-E). By
using the value from seeds, the generator makes use of the
feedback of runtime values.

Therefore, to accept the feedback of runtime values, argu-
ments for txi are generated when all executions of txj (j < i)
are done and dynamic seed sets are updated.

4) Blockchain Properties Generation: Blockchain proper-
ties that need to generate include message properties and block
properties. There are two message properties to be generated:
msg.sender, indicates the sender of the transaction, and
msg.value, indicates the amount of currency the transaction
carries with. The sender is selected from a predefined set of
accounts, which represents the accounts owned by attackers.
Note that the creator of the contract is apart from this account
set. The generation of msg.value is the same as generation
of arguments since it is also an uint256 value. In addition,
generator checks the function to be payable before gener-
ating value. Otherwise, the value should be zero.
block.timestamp and block.number indicate the

timestamp and height of block which contains the current
transaction, respectively. We instrument EVM environment to
configure these block properties for each transaction execution.
For example, the timestamp of a transaction can be the
timestamp of the previous transaction plus a random period
(e.g., 30 days in maximum).

After the above generation processes, a transaction is finally
complete and ready to be executed.
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C. Instrumented EVM Environment

EVM environment is used to deploy contracts and execute
transactions. We implement ETHPLOIT’s instrumented EVM
environment based on remix-debugger [18], an open-source
debugger for Solidity contracts. The environment can extract
full execution trace of a transaction, including stack and mem-
ory status when processing each opcode. Compared with the
private Ethereum chain used in many smart contract analysis
tools, the debug environment is more fast and flexible to
configure. To solve the problem of Blockchain Effects defined
in Section III-A, we deploy three light-weight instrumentation.

First, instrumented EVM configures accounts to do initial-
ization for each test case. Before each test case proceeds,
instrumented EVM sets all accounts’ balance to a default value
and deploys the target contract. Each newly deployed contract
is assigned by some initial balance.

Second, instrumented EVM configures block properties for
each execution. The environment provides APIs for test case
generator to generate block properties for each transaction
during the block generation in the environment.

Third, the environment can force any external call to throw
exceptions. In Ethereum, external calls, especially send,
maybe failed accidentally because of the bad destination, lack
of gas or insufficient balance. Such failure of calls can lead
the execution to other paths which may contain error handling
logic. However, many analysis tools (e.g., Teether and Con-
tractFuzzer) ignore this possibility and lose the coverage of
code. To improve the coverage of exploitation, transactions
with external calls are executed twice. In the first execution,
the transaction normally proceeds but in the second execution,
the environment throws exceptions inside external calls.

D. Trace Analysis

Coverage guider and exploit detector both perform analysis
on the contract execution trace extracted from the instrumented
EVM environment. Coverage guider rewards the discovery
of new execution paths and provides runtime information to
the feedback handler. Exploit detector detects whether the
execution triggers vulnerabilities and performs a successful
exploit. If so, the exploit detector then reports the exploit.

1) Coverage Guider: To measure the progress of exploit-
oriented fuzzing, we introduce a new coverage criterion based
on statement coverage [19]: critical instruction coverage.

Rather than take all statements into consideration, critical
instruction coverage only focuses on the critical instructions
including: SSTORE which saves a value to contract state,
and SELFDESTRUCT, CALL, CALLCODE, DELEGATECALL
which make external calls. These instructions are indispens-
able for a successful exploit. If there are newly reached critical
instructions in the execution trace, the coverage guider tags the
corresponding test case as a coverage increment. An event of
coverage increment triggers two effects as rewards.

First, Seed feedback. Some runtime values (e.g., arguments,
state variables, etc) in the execution will be selected as new
seeds, which guide variable generation in later rounds under
dynamic seed strategy (Section IV-E).

Second, function distribution feedback. Recall that function
selection is based on a probability distribution P . Since the
current sequence I increase the coverage, we increase the
probability of selecting functions of I in the future. In feed-
back handler, we use a simple method to calculate a probability
distribution P . For each function f , P (f) = c0+

Nc

Nt
(c1−c0),

where Nc denotes the number of executions of coverage
increment, Nt denotes the total number of executions, c0 and
c1 are the minimum and maximum boundary.

2) Exploit Detector: Exploit detector uses three oracles to
detect the exploits defined in Section II-B.

The Balance Increment oracle detects whether attackers
can gain financial profits by exploiting a contract, Recall
that instrumented EVM sets a group of accounts as the
attackers’ accounts. After the execution of a test case, the
oracle collects the balance of attackers’ accounts and compares
the current balance with the default initial one. The oracle
claims a successful Balance Increment exploit if the balance
of attackers’ accounts increases.

The Self-destruction oracle detects whether the contract
is unexpectedly destroyed. The oracle analyzes the execution
traces of a test case and if it finds the opcode SELFDESTRUCT
in the trace, it claims a successful exploit since the opcode
SELFDESTRUCT is the only way to destroy a contract.

The Code Injection oracle detects whether attackers can
inject codes into the execution of the contract. The oracle first
finds opcodes CALLCODE and DELEGATECALL, which can
import external codes. Second, the detector checks whether the
destination of the two opcodes is controlled by the attacker. To
be detailed, when EVM is going to execute the two opcodes,
the detector accesses the program stack, fetch the destination
value and check whether the destination is in the set of
attackers’ accounts. If there is the code-injection opcode whose
destination is controlled, the oracle reports an exploit.

E. Dynamic Seed Strategy

As mentioned in Section IV-B, our seed strategy is part of
feedback handling, which aims to guide the test case generator
to produce proper function arguments. The seeds are selected
mainly based on execution feedback from trace analysis.

Each argument in each function has a seed set that is
initialized to an empty set. The strategy is dynamic because
there are new seeds adding into seed sets after each execution
of transactions and each execution of test cases. These new
seeds indicate knowledge about previous executions and guide
future argument generation.

There are two types of seeds in the strategy: global seeds
and local seeds. Global seeds have a lifetime during fuzzing
one contract, similar to the seeds in traditional coverage-
guided fuzzing. When receiving a notification of coverage
increment from the coverage guider, all arguments of that
execution are added into the corresponding global seeds, which
help searching deeper paths.

Local seeds are designed for transaction sequences espe-
cially. These seeds are initialized when starting to execute a
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test case and are updated after every single transaction is exe-
cuted and before generating the next transaction’s arguments.
In details, local seeds have the following sources:

1) Previous arguments. Once a transaction is executed, its
arguments will be recorded as local seeds.

2) State variables. After a transaction execution, the cover-
age guider will collect the latest values of state variables
and labels them as local seeds.

3) I/O of complicated calls. Cryptography functions, for
example, are hard to predict or solve. We collect inputs
and outputs of these complicated functions as seeds.

4) Constant values. For each function, we collect magic
numbers or literal values in its function body as seeds.

Next, we solve the challenge of feeding seeds accurately to
target arguments, mentioned in Section III-B. Suppose we have
got a set of local seeds with various types before generating a
transaction’s arguments, we should filter the seeds for valuable
ones and mapping the valuable seeds to corresponding target
arguments. Seed feeding should satisfy two rules:
• Type match. The seed should have the same (or trans-

formable) type as the target input argument.
• Taint constraint. The seed and target argument must taint

the same taint sink. Formally, for a taint sink in Taint
Relation Graph, there is a path from the seed to the sink
and another path from the target argument to the sink.

As an example, we illustrate how dynamic seeds solve
Unsolvable Constraints in contract Game (Figure 1). Suppose
we generate a test case (StartGame, Try) (here we use
function to represent transaction) and the target hash check
is in Try. After the execution of StartGame, the value
of StartGame’s argument _response is fed into Try’s
argument _response as a local seed so that it is possible
to pass the hash check. This seed feeding is qualified since
two arguments are both in string type and both taints
transfer. Also, the input of keccak256 in StartGame
is added into local seeds for Try’s argument _response. In
a similar way, it can help pass the hash check.

V. EVALUATION

In this section, we assess the performance of ETHPLOIT
by conducting two experiments. First, we evaluate its effec-
tiveness of generating exploits and compare the result with
state-of-art tools Teether and MAIAN. Second, we assess the
contribution of three key technologies to fuzzing efficiency.

A. Experiment

Dataset. We collected 49,522 smart contracts with verified
source code from Etherscan [5] by the December of 2018.
After removing the duplicated ones and those requiring depre-
cated compiler versions, we finally got 45,308 smart contracts
for further experiments.

Setup. ETHPLOIT is written in 3,846 LOC python for fuzzing
and 397 LOC nodejs for the instrumented EVM environ-
ment by modifying remix-debugger [18]. We use solc with
the version of 0.4.25 as the solidity compiler. We ran our

experiment on a server with Ubuntu 18.04, Intel(R) Xeon(R)
Gold 5122 CPU @ 3.60GHz and 128GB RAM. We set the
maximum fuzzing test cases for a smart contract as 1,000
(i.e., Tmax = 1, 000). Our results confirm that the 1,000
test cases are sufficient since most exploits are discovered in
100 test cases. It indicates that ETHPLOIT either generates
an exploit after at most 1,000 fuzzing tests or regards the
contract as secure. According to the results reported by Teether
and MAIAN, most smart contract exploits can be found by
transaction sequences whose length is at most three. Therefore,
we set the maximum length for a test case as three (K = 3).

B. Evaluation of Smart Contract Exploits

Results of ETHPLOIT. We applied ETHPLOIT to the entire
dataset and completed the experiment in 100 hours. In total,
ETHPLOIT discovered 554 exploitable contracts. Since some
contracts expose multiple exploitable vulnerabilities and We
regard two exploits are different if the function of the last
transaction (txK .f ) is different. ETHPLOIT totally generated
644 exploits, which are verified using real-world EVM, in-
cluding 600 Balance Increment, 59 Self-destruction, and
4 Code Injection. Also, we show details of 12 typical ex-
ploitable contracts in Table II.

The classification of exploits tells the consequences of
exploits. To further learn the kind of vulnerability these
exploits trigger, we manually inspected all generated exploits
and observed that ETHPLOIT exploited all the vulnerabilities
discussed in II-C. As shown in Table I, ETHPLOIT identified
112 Exposed Secret, 351 Unchecked Transfer Value, 142
Vulnerable Access Control, and 39 others, as Table I shows.

For Exposed Secret, 104 out of 112 exploits have crypto-
graphic checks in the execution path. Corresponding contracts
have a secret setter that accepts secret value as an argument,
hashes it and stores the hash value to state variables. The
secret checker then accepts hash value as input, hashes it and
compares the hash output with the stored hash value. For these
contracts, ETHPLOIT uses dynamic seeds to fetch secret values
from previous execution and solves the constraint of secret
checker, while symbolic execution cannot succeed in this. In
the other eight exploits, the corresponding contracts directly
save the plain text of the secret to state variables without
hashing it. Even random fuzzing can exploit these contracts
but the dynamic seeds make the exploit discovery faster.

Among Unchecked Transfer Value, ETHPLOIT triggers 144
Unlimited Profit, including 127 with high-yield investments,
where the profit is calculated based on block number or
timestamps. ETHPLOIT can simulate these block properties
to gain profit from these contracts. The other 17 contracts are
lottery games that use random numbers to calculate the value
of currency transfer. Since they use block properties as ran-
dom seeds, ETHPLOIT can exploit them by random fuzzing.
Another 181 contracts have misused this.balance. We
recommend using state variables to record expected transfer
values with explicit limits rather than using this.balance.

Most Vulnerable Access Control comes from ERC20-Token
contracts which have the same problem as the HOTTO (List-
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TABLE I: SUMMARY OF EXPLOITS GENERATED BASED ON TRIGGERED VULNERABILITIES.

Tools Exposed Secret Unchecked Transfer Value Bad Access Others TotalCryptographic Checks Others Total Unlimited Profit Misused this.balance Others Total Control
ETHPLOIT 104 8 112 144 181 26 351 142 39 644

teether 0 0 0 30 25 6 61 13 3 77
MAIAN 0 4 4 31 143 16 190 99 3 296

TABLE II: INFORMATION OF TYPICAL CONTRACTS EXPLOITED BY ETHPLOIT.

Contract Information Exploit results Number of Test Cases
Contract Address #Tx Highest Balance Vulnerability Teether/MAIAN Normal No EVM No Seeds No Taint

TestR 0xaf53... 6 0.5 ETH, $269.2 Exposed Secret ×/
√

13.0 18.1 - 8.9
BLITZ GAME 0x35b5... 4 6.0 ETH, $572.6 Exposed Secret ×/× 49.6 50.0 - 169.0
Who Wants... 0xfc62... 10 4.0 ETH, $546.3 Exposed Secret ×/× 46.2 28.0 - 61.5

Game 0xe37b... 6 3.0 ETH, $445.9 Exposed Secret ×/× 50.2 37.8 - 65.5
GPUMining 0xa965... 346 1.2 ETH, $712.3 Unchecked Transfer Value ×/× 188.1 660.6 319.7 332.9

HRKD 0x0a70... 307 50.1 ETH, $11k Unchecked Transfer Value ×/× 48.4 - 29.2 20.1
Slotthereum 0xb43b... 76 0.4 ETH, $92.4 Unchecked Transfer Value ×/× 52.9 87.4 214.6 57.2

Divs4D 0x3983... 161 4.1 ETH, $905.3 Unchecked Transfer Value ×/× 10.7 - 18.9 29.1
DailyRoi 0x77e4... 4,488 397.1 ETH, $87k Unchecked Transfer Value ×/× 11.6 - 10.3 10.7
Dividend 0xe3ac... 47 140.5 ETH, $66k Unchecked Transfer Value ×/

√
134.7 47.8 - 333.3

HOTTO 0x612f... 132 1.1 ETH, $320.1 Bad Access Control ×/
√

18.2 23.8 - 15.3
Crypto...Network 0x781f... 52K 1.3 ETH, $541.8 Bad Access Control ×/

√
28.8 40.0 21.4 89.7

ing 2). Exploits generated by ETHPLOIT first invoke the
vulnerable function to change the ownership of the contracts,
then withdraw funds or destruct the contracts as the owner.

To reflect the impact of vulnerabilities identified by ETH-
PLOIT, we collected the execution history of exploitable
contracts from etherscan [5]. We found that 32 contracts
with Exposed Secret have been exploited, which lost 37.3
ethers, about $6,485 in total. Unchecked Transfer Value and
Vulnerable Access Control affect lots of heavily used contracts
in Ethereum. DailyRoi, for instance, has proceeded 4,888
transactions and has a maximum balance of 397.1 ETH (equal
to $87k). Dozens of accounts have gained profit from such
contracts, using the similar exploits generated by ETHPLOIT.

Compared to State-of-the-Art Tools. Teether [13] and MA-
IAN [14] are the only available exploit generation tools for
smart contracts (Section VI) so we selected Teether and
MAIAN as our baseline and compared the result of ETHPLOIT
with them. We applied Teether and MAIAN to the entire dataset
with a timeout of 5 minutes for each contract. However, 5123
contracts and 102 contracts were unable to be analyzed by
Teether and MAIAN, respectively, because of program crashes
or timeout. As Table I shows, they generated 77 and 296 valid
smart contract exploits, respectively.

ETHPLOIT covers 306 more exploits than Teether and
MAIAN in total. As we claim in Section III-A, Teether and
MAIAN cannot generate valid exploits for contracts if they
have Unsolvable Constraints or Blockchain Effects. As a
result, both tools have zero coverage on Exposed Secret with
cryptographic checks because of Unsolvable Constraints, and
low coverage on Unchecked Transfer Value with unlimited
profits because of Blockchain Effects, as shown in table I.

In addition, Teether generates 14 false positives. First, when
Teether tries to solve hash checks, it generates unmatched hash
input and output, which makes the exploits invalid for seven
contracts. Second, different from our definition of Balance In-

crement exploitation, Teether reports exploits once a currency
transfer is triggered. However, another seven false-positive
contracts set explicit checks to make sure the in-going fund is
larger than out-going funds. Though the attackers can trigger
an out-going currency transfer, their expense is more than
the profit, which is not successful exploitation. Also, Teether
crashes a lot when proceeding contracts, which damage the
overall performance as well.

As for MAIAN, it is not designed for Code Injection ex-
ploitation so it missed that type of exploits. Also, in MAIAN’s
attack model, attackers are not allowed to submit funds into
the contracts when trying to find Balance Increment, which
causes a loss of coverage.

Though ETHPLOIT does not produce any false positives, it
has some false negatives. ETHPLOIT focuses on the transac-
tions from attackers’ accounts to the target contract and no
other contracts are deployed in the EVM environment. There-
fore, ETHPLOIT cannot generate exploit for vulnerabilities that
need cross-contract calls. Fortunately, these are only 7 false-
negative cases in 45,308 contracts. In future work, we plan to
extend the attack model to address the false negatives.

As for time consumption, ETHPLOIT generates about 15 test
cases per second. For generated exploits in this experiment,
ETHPLOIT spends 28 test cases on average, which takes
several seconds. However, Teether and MAIAN takes several
minutes to identify an exploit on average.

C. Evaluation of Core Techniques

To further clarify the effectiveness of our methodology,
we separately evaluate the three key fuzzing techniques of
ETHPLOIT: dynamic seed strategy, instrumented EVM en-
vironment and constrained sequence generation. We use the
newly discovered 554 exploitable contracts as the benchmarks.
In this experiment, each benchmark is run under four different
configurations of ETHPLOIT: 1. Baseline. All techniques are
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Fig. 3: Efficiency of exploitation on benchmarks with/without pro-
posed fuzzing techniques.

enabled; 2. Without EVM instrumention; 3. Without dynamic
seed strategy; 4. Without taint constraints.

To evaluate the efficiency of the fuzzing task, we record the
number of test cases before discovering any exploit as the main
metric. Because of our light-weight implementation of fuzzing
techniques, the bottleneck of fuzzing speed lies in EVM rather
than test case generation, and four configurations achieve
almost the same fuzzing speed. Therefore, we use the number
of test cases rather than fuzzing time to represent fuzzing
efficiency, which will eliminate the impacts of hardware.

We run each benchmark 10 times under each configuration
with Tmax = 1000. From Figure 3a, we can observe that
ETHPLOIT misses most Exposed Secret without dynamic seed
strategy and misses 69 Unchecked Transfer Value without
EVM instrumentation. This result makes sense because Ex-
posed Secret contracts frequently use hash functions while
Unchecked Transfer Value is often related to block properties.
Meanwhile, from Figure 3b we can observe that the overall
fuzzing efficiency is damaged when taint analysis is removed.
With taint constraints, over 90% exploits can be found in
100 test cases. Table II also shows results for some typical
contracts (blank means a failure of exploit generation).

VI. RELATED WORK

Smart Contract Analysis Tools. Current smart contract
analysis covers a large range of program analysis techniques,
including static analysis, dynamic analysis, fuzzing, and for-
mal verification. Static analyzers SmartCheck [20], Slither [17]

MadMax [11] and ZEUS [21] extract code patterns, which is
scalable and fast to find vulnerabilities by matching predefined
patterns. Dynamic analyzers such as Oyente [9] Manticore [22]
and Mythril [23] apply symbolic execution to explore all
execution paths of the contract, which is accurate but has low
scalability because of the path explosion [24] and unsolvable
paths. Formal verification [25], [26] is another static approach
for vulnerability discovery. Securify [10] uses a formal verifi-
cation engine to analyze bytecode.

As for smart contract fuzzers, ReGuard [27] focuses on
reentrancy bugs, ContactFuzzer [12] applies random fuzzing
while Echidna [28] is a general fuzzing framework. [29], [30]
introduced predicted input and lookahead analysis to improve
coverage of smart contract fuzzing. [31] managed to improve
fuzzing coverage by learning from symbolic execution experts
through neural networks. However, none of these fuzzers
targets on exploit generation like ETHPLOIT.

Different from vulnerability detection, exploit generation
targets on the consequences of attacks rather than the code
patterns. Only Teether [13] and MAIAN [14] focus on exploit
generation. Both tools integrates symbolic execution and aim
to find a sequence of transactions to exploit contracts, trans-
ferring money out of the contract for instance. However, these
tools fail to generate some exploits because of two problems
we mentioned in Section III.

Fuzzing Techniques. To improve code coverage of fuzzing,
symbolic execution aided fuzzing [32]–[35] applies (selective)
symbolic execution to guide input selection but introduces
high overhead; static analysis aided fuzzing [36]–[39] is light-
weight but lacks accurate analysis; machine learning aided
fuzzing [40]–[43] use deep learning models to predict exe-
cutions and guide fuzzing policy, but relies on a large volume
of high-quality training data. Considering smart contracts are
usually small programs with defined structures, static analysis
is an approach to guide fuzzing with the minimum cost.

VII. CONCLUSION

In this paper, we design ETHPLOIT to automatically find
exploits of Ethereum smart contracts. ETHPLOIT deploys
light-weight approaches to solve the problems of previous
tools: Unsolvable Constraints and Blockchain Effects. Our ex-
periment shows that ETHPLOIT achieves efficient and accurate
smart contract testing and covers more exploits which is hard
to discover by previous exploit generation tools. We analyze
the cause of exploits and introduce a new smart contract
vulnerability Exposed Secret.
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