
SMARTSHIELD: Automatic Smart Contract
Protection Made Easy

Yuyao Zhang∗, Siqi Ma†(�), Juanru Li∗(�), Kailai Li∗, Surya Nepal†, and Dawu Gu∗
∗Shanghai Jiao Tong University, Shanghai, China

{breakingpoint, jarod, silence 916, dwgu}@sjtu.edu.cn
†Data61, CSIRO, Sydney, Australia
{siqi.ma, surya.nepal}@csiro.au

Abstract—The immutable feature of blockchain determines
that traditional security response mechanisms (e.g., code patch-
ing) must change to remedy insecure smart contracts. The only
proper way to protect a smart contract is to fix potential risks
in its code before it is deployed to the blockchain. However,
existing tools for smart contract security analysis focus on
the detection of bugs but seldom consider the code fix issues.
Meanwhile, it is often time-consuming and error-prone for a
developer to understand and fix flawed code manually. In this
paper we propose SMARTSHIELD, a bytecode rectification
system, to fix three typical security-related bugs (i.e., state
changes after external calls, missing checks for out-of-bound
arithmetic operations, and missing checks for failing external calls)
in smart contracts automatically and help developers release
secure contracts. Moreover, SMARTSHIELD guarantees that
the rectified contract is not only immune to certain attacks but
also gas-friendly (i.e., a slightly increase of gas cost). To evaluate
the effectiveness and efficiency of SMARTSHIELD, we applied
it to 28,621 real-world buggy contracts on Ethereum blockchain
(as of January 2nd 2019). Experiment results demonstrated that
among 95,502 insecure cases in those contracts, 87,346 (91.5%) of
them were automatically fixed by SMARTSHIELD. A following
test with both program analysis and real-world exploits further
testified that the rectified contracts were secure against common
attacks. Moreover, the rectification only introduced a 0.2% gas
increment for each contract on average.

Index Terms—Ethereum blockchain, Smart contract, Auto-
mated bug fix, Bytecode rectification

I. INTRODUCTION

Since the birth of Ethereum in 2015, various severe bugs
in smart contracts1 have been exploited, resulting in a loss
of tens of millions USD worth of Ether [1]. To remedy this
situation, two aspects of efforts have been made. On the one
hand, a wide variety of approaches have been proposed to
identify bugs in smart contracts. Some [2]–[5] utilize symbolic
execution to discover potential security bugs, while others [6]–
[9] leverage pattern matching and fuzzing to detect real-world
security bugs in smart contracts. On the other hand, a large
number of programming guides with best-practice recommen-
dations [10]–[13] have been released to help developers avoid
common pitfalls.

Despite the aforementioned efforts are made, a majority of
smart contracts on the Ethereum blockchain are still developed
without following the best-practice recommendations. Severe

1In this paper we focus on smart contracts on Ethereum platform. We use
the concept smart contract to denote Ethereum Smart Contract.

threats happened on smart contracts [14] and a large number
of bugs are reported every day in which 25% of them are
critical bugs [15]. We argue that most existing tools (e.g.,
Securify [6], Osiris [16], and Mythril [17]) aiming at detecting
smart contract bugs are insufficient: they only report where
bugs locate instead of helping developers fix the buggy code.
Although a bug is detected, manually bug fixing is not only
error-prone, but also time-consuming because 1) numerous
suggestions with incorrect implementations are posted on-
line [18]; 2) developers have to learn dependencies in each
contract before fixing to avoid side effects. As a result, an
automated code fix approach is expected to help developer
deploy bug-free contracts before the deployment. Otherwise,
bug detection tools only benefit attackers to exploit buggy
contracts while deployed smart contracts are not allowed
to be updated on blockchain.

As typical security-related bugs have certain insecure pat-
terns, it is feasible to fix these bugs by revising these insecure
patterns [19]. To help developers fix security-related bugs au-
tomatically, a variety of automatic program repair techniques
have been proposed [20]. These repair techniques, targeting
on different program languages such as Java [21], [22] and
C [23], [24], rely on various mutators such as replacing field
accesses, method invocations. However, the above techniques
are unable to be applied to rectify insecure smart contracts.
Comparing with Ethereum Virtual Machine (EVM) bytecode,
source code and bytecode of the high-level programs are more
semantically understandable. On the contrary, EVM bytecode
is designed for efficient execution and compacting program
representation. It not only omits notions of structs and objects,
but also ignores the concept of method. Operations targeting
on these structures become useless.

Hence, we make a first step towards a general-purpose
smart contract protection against attacks exploiting insecure
smart contracts. We design and implement an automated
smart contract rectification system, SMARTSHIELD. It fixes
insecure cases in each vulnerable smart contract to secure
the EVM bytecode of the contract for the final deployment.
SMARTSHIELD takes three steps to fix insecure cases in
each smart contract: 1) it conducts a semantic-preserving code
transformation to assure that only the insecure code patterns
are revised, and the functionalities of the irrelevant functions
are consistent; 2) it follows the gas-friendly requirement by

adopting heuristics to optimize gas consumption2 and thus the
increments of gas consumption are restricted to an acceptable
level; 3) it recognizes a particular insecure case whose fix may
lead to side effects and sends its rectification suggestion back
to developers, which help them rectify contracts as well as
improve the code quality.

To evaluate SMARTSHIELD, we first built a dataset with
labeled insecure cases. We collected 28,621 contracts with
insecure code from 2,214,409 real-world smart contracts (from
the Ethereum Mainnet, ETH). In total, these insecure contracts
contains 95,502 insecure cases. Then, we utilized SMART-
SHIELD to fix the insecure cases. 87,346 (91.5%) insecure
cases were fixed and the secure version of 25,060 (87.6%)
contracts were generated. To testify whether these rectified
contracts are secure, we simulate the attacker with both pro-
gram analysis tools and real world exploits. We leveraged three
state-of-the-art smart contract vulnerability detection tools
(i.e., Securify [6], Osiris [16], and Mythril [17]) to find bugs in
the rectified contracts, and replayed 55 exploits that had caused
serious impacts against existing contracts. The results showed
that contracts rectified by SMARTSHIELD were bug-free
and thwart all exploits. We also replayed historical transactions
to validate the normal functionalities in the rectified contracts,
and found only 60 (0.24%) rectified contracts encountered
execution inconsistency Additionally, the historical transaction
replay demonstrated that the increment of gas consumption
was only 0.2% on average for each rectified contract. Our
experimental results indicated that SMARTSHIELD is ef-
fective and efficient in protecting diverse real-world insecure
contracts.

II. MOTIVATION

Targeting on smart contracts, we observe that a large portion
of insecure cases containing common patterns. It indicates
that these bugs can be identified and fixed through a unified
approach. In the following, we first discuss three representative
security-related bugs in smart contracts and summarize their
insecure code patterns. Then, we present a smart contract rec-
tification approach, which generates secure EVM bytecode by
fixing these bugs. Through the rectification approach, insecure
contracts are automatically rectified before their deployment
even though the insecure cases are mistakenly introduced
by developers. The security level of the entire ecosystem is
significantly improved.

A. Insecure Code Patterns in Smart Contracts

In this paper, we discuss three typical insecure code pat-
terns: state changes after external calls, missing checks for
out-of-bound arithmetic operations, and missing checks for
failing external calls. According to both security requirements
outlined in official Solidity document [10] and other proposed
best practices of smart contracts [11]–[13], these patterns are
the most critical security risks to smart contracts consistently.
We present the details below.

2Gas indicates the fee that needs to be paid to the Ethereum network in
order to conduct a transaction or execute a smart contract.

State Changes after External Calls. This insecure code
pattern indicates the scenario that a state variable (i.e., a
variable stored in the storage) is updated after an external
function call. It may result in a re-entrancy bug under
particular circumstances. Actually, one of the most notorious
attacks, the DAO attack, occurred on June 18th, 2016 and led
to the hard fork of the Ethereum blockchain, exactly exploited
such insecure code in the DAO contract [25].

1

2

3

4

5

6

7

8

mapping (address => uint) public userBalances;

...

function withdrawBalance(uint amountToWithdraw) public {

 require(userBalances[msg.sender] >= amountToWithDraw);

+ userBalances[msg.sender] -= amountToWithdraw;

 msg.sender.call.value(amountToWithdraw)();

- userBalances[msg.sender] -= amountToWithdraw;

}

Fig. 1: An example of state changes after external calls

In Figure 1, we give a concrete example of state changes
after external calls. The user is allowed to withdraw funds
by calling function withdrawBalance declared from line 3
to line 8, in which function call.value(.) at line 6 calls a
function in another contract. Suppose that an attacker uses a
malicious contract to call function withdrawBalance declared
in an insecure contract, it calls back to the malicious contract
by executing function call.value(.) at line 6. Simultaneously,
the insecure contract hands over control to the malicious
contract as well as sending Ether. Because the control is
handed over, the insecure contract then waits until the external
call returns. Although Ether has been sent to the malicious
contract, the state variable userBalances at line 7 is not
updated yet. Therefore, the malicious contract can bypass the
validity check declared at line 4 and launch the re-entrancy
attack to ask for fund withdrawal again.

1

2

3

4

5

6

7

8

9

10

11

12

13

uint public lockTime = now + 1 weeks;

address public user;

...

function increaseLockTime(uint timeToIncrease) public {

 require(msg.sender == user);

+ require(lockTime + timeToIncrease >= lockTime);

 lockTime += timeToIncrease;

}

...

function withdrawFunds() public {

 require(now > lockTime);

 user.transfer(address(this).balance);

}

Fig. 2: An example of missing checks for out-of-bound arithmetic
operations

Missing Checks for Out-of-Bound Arithmetic Operations.
This insecure code pattern depicts the scenario that an arith-
metic statement is operated without checking the data validity
in advance. If an out-of-bound result is produced by the
arithmetic operation, an arithmetic bug, such as integer
overflow and underflow, will be caused. In 2018, an integer
overflow bug has affected more than a dozen of ERC20

contracts and directly led to withdrawal and trading suspension
of BeautyChain (BEC) token [26].

The sample code containing a missing checks for out-of-
bound arithmetic operations pattern is shown in Figure 2.
According to the statement at line 11 in function withdraw-
Funds, user’s fund is locked for a week before it can be
withdrawn. Optionally, the lock time (i.e., the unsigned integer
variable lockTime) can also be increased by calling function
increaseLockTime. However, the time increment relies on
the parameter timeToIncrease, which is given by a user. A
malicious user can provide a large number for the addition
operation to produce an overflow at line 7, and bypass the
statement of time check at line 11.
Missing Checks for Failing External Calls. This insecure
pattern specifies that the return value is not being checked
after calling a function in an external contract or after sending
Ethers. If the contract invokes an function in another contract
by using a low-level operation (e.g., call, send), instead of a
high-level transfer. Exceptions thrown by the callee contract
cannot be propagated to the caller contract. Instead, a boolean
value — false is returned. If the caller contract does not check
the return value, an unchecked return value bug may be
caused.

1

2

3

4

5

6

7

8

9

10

bool public payedOut = false;

address public winner;

uint public bonus;

...

function sendToWinner() public {

 require(!payedOut && msg.sender == winner);

- msg.sender.send(bonus);

+ require(msg.sender.send(bonus));

 payedOut = true;

}

Fig. 3: An example of missing checks for failing external calls

In the contract listed in Figure 3, the sendToWinner function
is used for winners to claim bonus. The contract sets the state
of payment (payedOut) as true at line 9 after the execution of
sending bonus by default, although the operation send(.) at line
7 may return false. However, the contract still sets payedOut
as true even the bonus is failed to be sent to the winner. As a
result, this contract can never send the bonus afterwards.

B. Automatic Rectification

We argue that insecure code patterns mentioned in Sec-
tion II-A can be revised through certain code analysis and
code transformation. To implement this target and thus protect
smart contracts against corresponding attacks, we propose an
approach to automatically rectify insecure smart contracts,
which generates correct and optimized contract bytecode.

1) Insecure Pattern Revise: Following the best practice of
checks-effects-interactions [27], we revise the three insecure
code patterns as below.
State Changes after External Calls. The insecure pattern,
state changes after external calls, is caused by an incorrect
execution sequence of state change and external call. It can be

revised by moving all state changes to the front of an external
function call. Consider the example in Figure 1, the insecure
code can be fixed by moving the statement of the state change
at line 7 to the front of the statement of the external function
call at line 6.
Missing Checks for Out-of-Bound Arithmetic Operations.
The insecure pattern of missing checks for out-of-bound arith-
metic operations can be resolved by inserting a boundary
check to an arithmetic operation. A concrete example in
Figure 2 at line 6 demonstrates how to check such out-of-
bound exception. As each type of the integer variables in
Solidity [28] is restricted in a certain range, the insecure pattern
are revised by inserting a validity check before the arithmetic
operation at line 7 to examine whether the result is out of
range.
Missing Checks for Failing External Calls. To address
missing checks for failing external calls, a validity check must
be provided to guard the return of a function call that invokes
a function in an external contract. In Figure 3, the risk is
mitigated by inserting a validity check at line 7 after the
external function invoking.

2) Bytecode Generating: According to the revise sugges-
tions for insecure patterns, SMARTSHIELD applies the
following techniques to generate rectified smart contracts.
Bytecode-Level Program Analysis. Different from natural
languages, the semantic information at the bytecode level is
unified. To obtain the semantic information, a bytecode-level
program analysis (refer to Definition III-A) is required. Such
semantic information is necessary for further code transforma-
tion and secure bytecode generation (Section III-A).
Semantic-Preserving Code Transformation. To guarantee
that the insecure code fix does not affect other original
functionalities, our rectification applies a semantic-preserving
transformation technique to compile each insecure contract to
a secure bytecode version. Based on the extracted bytecode-
level semantic information, the semantic-preserving transfor-
mation proves that only the insecure code snippet is adjusted
and functionalities irrelevant to the insecure case are not
affected (Section III-B).
Gas Optimization. An important feature of the smart contract
is that each instruction consumes a certain amount of gas
during the contract execution. Deploying a contract costs 200
units of gas per byte [29]. Hence, we should avoid unneces-
sary instructions while generating bytecode. To implement a
gas-friendly bytecode generation, our rectification introduces
several optimization policies to guarantee a minimum gas
consumption during the contract execution (Section III-B).

III. SMARTSHIELD

In this section, we introduce our automated smart contract
rectification system, SMARTSHIELD, in detail. Designed to
automatically fix insecure cases with typical insecure code
patterns in smart contracts, SMARTSHIELD takes a smart
contract as input and outputs a secure EVM bytecode without
any of the three insecure code patterns (i.e., state changes

DataGuard
Insertion

Control Flow
Transformation

Bytecode
Validation

Bytecode
Relocation

Smart
Contract

Smart
Contract

Smart
Contract

Abstract Syntax Tree
(AST)

Abstract Syntax Tree
(AST)

Abstract Syntax Tree
(AST)

Unrectified
EVM Bytecode

0000:

0002:

0003:

0004:

0007:

0008:

0009:

PUSH1 0x80

MLOAD

ISZERO

PUSH2 0x0011

JUMPI

STOP

JUMPDEST

...

0000:

0002:

0003:

0004:

0007:

0008:

0009:

PUSH1 0x80

MLOAD

ISZERO

PUSH2 0x0011

JUMPI

STOP

JUMPDEST

...

Unrectified
EVM Bytecode

0000:

0002:

0003:

0004:

0007:

0008:

0009:

PUSH1 0x80

MLOAD

ISZERO

PUSH2 0x0011

JUMPI

STOP

JUMPDEST

...

Unrectified
EVM Bytecode

0000:

0002:

0003:

0004:

0007:

0008:

0009:

PUSH1 0x80

MLOAD

ISZERO

PUSH2 0x0011

JUMPI

STOP

JUMPDEST

...

Rectified
Contract
Rectified
Contract
Rectified
Contract

Rectification
Report

Rectification
Report

Rectification
Report

Bytecode-Level
Semantic Information

Bytecode-Level
Semantic Information

Bytecode-Level
Semantic Information

Semantic Extraction Contract Rectification

Fig. 4: Workflow of SMARTSHIELD

after external calls, missing checks for out-of-bound arithmetic
operations, and missing checks for failing external calls).
Figure 4 depicts the workflow of SMARTSHIELD, which
contains two phases:

1) Semantic extraction: SMARTSHIELD analyzes both
the abstract syntax tree (AST) and the unrectified EVM
bytecode of each contract to extract its bytecode-level
semantic information.

2) Contract rectification: Given the extracted bytecode-
level semantic information, SMARTSHIELD fixes in-
secure control flows and data operations through control
flow transformation and DataGuard insertion, respec-
tively.

Finally, SMARTSHIELD generates the rectified EVM
bytecode as well as a rectification report to the developer.

A. Semantic Extraction

Definition. Bytecode-level semantic information in a smart
contract refers to control and data dependencies among in-
structions in EVM bytecode.

Since the EVM is a stack-based virtual machine and its byte-
code is compact and highly optimized, information collected
from bytecode level may not be complete. To obtain precise
bytecode-level semantic information, SMARTSHIELD ana-
lyzes the abstract syntax tree (AST) of each contract combined
with its unrectified EVM bytecode.

SMARTSHIELD parses the source code of each contract
and builds an AST to derive control flows among statements
and data flows among variables. It first generates a control
flow graph (CFG) to extract control flows. Each node in the
CFG is a statement and a directed edge is added between
two nodes. The direction of an edge follows the execution
sequence of the two statements, which represents their control
flow. Refer to CFG, SMARTSHIELD further extracts data
flows. In advance, SMARTSHIELD collects the following
variable information from the AST: (1) variable types such
as local variables, state variables, parameters; (2) data types
such as bool, uint32, address; (3) source maps (i.e., a mapping
between a node in the AST and its original statement placed

in the source code). According to the variable information
and CFG, SMARTSHIELD performs data-flow analysis and
determines dependencies among variables.

Nonetheless, the control and data flows extracted from the
source code cannot be applied on bytecode directly. SMART-
SHIELD regards these flows as basic references and further
utilizes abstract execution to analyze EVM bytecode.

The abstract execution conducted by SMARTSHIELD
abstractly emulates the execution of each contract bytecode
and monitors the change of each execution state. During the
execution, each execution state is represented as a 4-tuple
(Instruction, Stack[], Memory[], Storage[]). Instruction rep-
resents the one that will be executed, and the remaining items
describe the present elements in the stack, the memory, and
the storage, respectively. In particular, the abstract execution
observes the execution state changes from two perspectives,
control flow transfer and data manipulation.
Control Flow Transfer. To monitor control flow transfer
and infer control dependencies among instructions, SMART-
SHIELD executes the following steps triggered by different
instructions:

• Execution halting: SMARTSHIELD terminates the se-
quence of the current execution when instructions STOP,
RETURN, REVERT, INVALID, or SUICIDE3 are met.

• Execution transfer: SMARTSHIELD transfers the cur-
rent execution after executing instructions JUMP and
JUMPI. JUMP refers to an unconditional transfer; thus,
SMARTSHIELD transfers the execution to the instruc-
tion at the target address, i.e., jump address. For JUMPI,
SMARTSHIELD explores two execution sequences si-
multaneously because it transfers the execution under cer-
tain conditions. One branch follows the original execution
sequence, and the other one executes instructions sequen-
tially starting from the target address. SMARTSHIELD
duplicates the current execution state when instruction
JUMPI is encountered. To ensure that SMARTSHIELD
terminates successfully, SMARTSHIELD terminates to

3Readers may refer to the formal specification of Ethereum [29] for
obtaining more details on the instruction set of the EVM.

explore the execution sequence if an instruction halts the
execution or the current state has been executed.

• Unaltered execution: SMARTSHIELD sequentially ex-
ecutes instructions not being included in the previous two
categories.

Data Manipulation. SMARTSHIELD monitors how EVM
bytecode manipulate data and obtains data dependencies. Since
instructions in EVM bytecode operate on elements in either
a stack or a memory, SMARTSHIELD separately emulates
stack and memory manipulations as follows:

• Stack manipulation: If an instruction A pushes an
operand v onto the stack, SMARTSHIELD labels v as
“assigned by A”. When an instruction B operates on the
operand v from the stack, SMARTSHIELD checks the
label of v and recognizes that B is data dependent on A.

• Memory manipulation: If an instruction A writes data
to a specific memory region mem, SMARTSHIELD
labels all addresses included in this memory region,
addr = addr1, ..., addrn, as “assigned by A”. For an
instruction B who reads data from the memory region
mem, SMARTSHIELD examines the label of addr in
mem and records that B is data dependent on A.

However, addresses to read or write may be unknown. For
example, some addresses are computed depending on input
data (i.e., calldata). We apply a conservative strategy to resolve
this issue by analyzing all addresses over the entire memory.
For an instruction writing to the memory, SMARTSHIELD
labels all possible addresses that can be written by this
instruction. Similarly, SMARTSHIELD extracts all possible
addresses that can be read by an instruction and then creates
data dependencies among these relevant instructions of reading
and writing memory regions.

B. Contract Rectification

Based on the extracted semantic information, SMART-
SHIELD adopts a semantic-preserving code transformation
with two strategies, control flow transformation and Data-
Guard insertion, to fix insecure cases in a contract.
Control Flow Transformation. SMARTSHIELD adopts
a control flow transformation to revise state changes after
external calls. SMARTSHIELD adjusts the original control
flow by moving the instruction SSTORE to the front of the
instruction CALL if SSTORE is executed after CALL in a cer-
tain execution path. However, simply modifying the execution
sequence of SSTORE and CALL may violate original depen-
dencies among instructions. In response, SMARTSHIELD
relies on the bytecode-level semantic information extracted in
Section III-A to address this issue.

Given the semantic information among instructions,
SMARTSHIELD first scans the instruction sequence between
SSTORE and CALL, and constructs a set containing all in-
structions that SSTORE either directly or indirectly depends
on. Then, SMARTSHIELD moves both SSTORE and instruc-
tions in the set to the front of CALL. Consider the insecure
case containing state changes after external calls shown in

0000:

0003:

0005:

0006:

0008:

0009:

000B:

000C:

001C:

001F:

0021:

0031:

0033:

0034:

0036:

PUSH2 0x5B61

PUSH1 0x80

MSTORE

PUSH1 0x80

MLOAD

PUSH1 0x00

SSTORE

CALL

...

PUSH2 0x5B61

PUSH1 0x80

MSTORE

...

PUSH1 0x80

MLOAD

PUSH1 0x00

SSTORE

+ 615B61

+ 6080

+ 52

+ 6080

+ 51

+ 6000

+ 55

 F1

 ...

- 615B61

- 6080

- 52

 ...

- 6180

- 51

- 6000

- 55

Data Dependency Rectification

Fig. 5: An example of control flow transformation

Figure 5. SSTORE at address 0x36 conducts a state change
after calling a function in an external contract made by
CALL at address 0x0C. SMARTSHIELD first constructs a
set consisting of all the predecessors of SSTORE, i.e., PUSH1
at address 0x34, MLOAD at address 0x33, PUSH1 at address
0x31, MSTORE at address 0x21, PUSH1 at address 0x1F,
and PUSH2 at address 0x1C. Then, SMARTSHIELD moves
those instructions together with SSTORE to fix the insecure
case.

Note that the moved instructions may depend on the ex-
ecution result of CALL. In such circumstance, the case with
state changes after external calls pattern cannot be fixed due
to the dependency conflict, and thus a manual refactoring of
the contract is expected. Consequently, SMARTSHIELD just
warns this case to the developer in the rectification report.

TABLE I: DATAGUARDS FOR OUT-OF-BOUND ARITHMETIC
OPERATIONS AND FAILING EXTERNAL CALLS

Category Instruction Operation DataGuard

Arithmetic ops
ADD a+ b a+ b ≥ a
SUB a− b a ≥ b
MUL a× b a× b÷ a = b

External calls CALL ret = a.call() ret 6= 0

DataGuard Insertion. SMARTSHIELD inserts specific
DataGuards to fix insecure cases with missing checks for out-
of-bound arithmetic operations and missing checks for failing
external calls. A DataGuard is a sequence of instructions
that performs certain data validity checks. SMARTSHIELD
introduces four manually built secure functions, containing
three secure arithmetic operations (i.e., secure operations to
execute instructions ADD, SUB, and MUL) and a secure external
call (CALL). Four DataGuards are illustrated in Table I. When
SMARTSHIELD locates a potential insecure operation, it
will utilize the corresponding DataGuard to check the result
and preclude attacks.

If SMARTSHIELD adds multiple DataGuards for all inse-
cure operations, the size of the EVM bytecode increases sig-

0000:

0002:

0003:

0006:

0007:

000A:

000D:

000E:

008A:

009A:

PUSH1 0x04

CALLDATALOAD

PUSH2 0x93A8

ADD

PUSH2 0x000E

PUSH2 0x008A

JUMP

JUMPDEST

...

JUMPDEST

<Safe Function for Addition>

JUMP

 6004

 35

 6193A8

- 01

+ 61000E

+ 61008A

+ 56

+ 5B

 ...

+ 5B

+

+ 56

Control Flow Transfer

Fig. 6: An example of DataGuard insertion

nificantly. To achieve the goal of gas optimization, SMART-
SHIELD first appends the secure functions to the end of the
generated EVM bytecode. Then SMARTSHIELD replaces
the insecure operation (e.g., an external call) by a secure
function invocation. Taken the EVM bytecode snippet in
Figure 6 as an example, ADD at address 0x06 performs an
add operation without checking the validity of the input data,
which might cause an out-of-bound issue. To fix this bug,
SMARTSHIELD replaces ADD by invoking the appended se-
cure ADD function (from address 0x8A to address 0x9A). Note
that EVM bytecode instructions do not support operations of
function calls and returns within a single contract. Therefore,
SMARTSHIELD directly pushes the target address and the
return address (code from address 0x07 to address 0x0E) to
implement a function invocation.

C. Rectified Contract Generation

After the insecure cases are fixed, SMARTSHIELD refines
and validates the rectified EVM bytecode, and then generates
a rectification report.
Bytecode Relocation. As the contract rectification may change
addresses of instructions, all unaligned target addresses of
instructions JUMP and JUMPI are required to be updated
to ensure the correct jump targets. In the EVM bytecode,
the target address of JUMP or JUMPI is generally pushed
onto the stack by a PUSH in advance. By analyzing the
data dependencies of JUMP or JUMPI, SMARTSHIELD
identifies the correlated PUSH instruction and updates the
unaligned target address.
Bytecode Validation. Given a rectified bytecode, SMART-
SHIELD validates whether the other irrelevant functions are
affected. SMARTSHIELD first extracts the bytecode-level
semantic information from the rectified contract. It then com-
pares the execution sequences and data flows of the unmodified
instructions with the original ones.
Rectification Report. Together with the rectified contract,
SMARTSHIELD generates a report to the developer. For
the successfully fixed cases, SMARTSHIELD records the
concrete modifications and leverages source maps to reflect
the modifications made on the AST. For those fixed cases

that fail to be validated, SMARTSHIELD marks them as
“unrectifiable”. Fix suggestions are included in the rectification
report for further manual verification or adjustments.

IV. EVALUATION

In this section, we evaluate the effectiveness and efficiency
of SMARTSHIELD. Specifically, we evaluate SMART-
SHIELD by answering the following research questions:
RQ1: Scalability. As SMARTSHIELD is proposed to pro-
tect smart contracts automatically, how scalable is SMART-
SHIELD in rectifying real-world smart contracts?
RQ2: Correctness. As SMARTSHIELD is designed to rec-
tify insecure contracts, how effective and accurate is SMART-
SHIELD in fixing insecure cases with the insecure patterns
and assuring the functionality consistency between the recti-
fied and the original contract?
RQ3: Cost. As SMARTSHIELD is introduced to help de-
velopers generate a secure and optimized smart contract, what
is the additional cost of the contract generation?

TABLE II: INSECURE CASES IN OUR DATASET

Category # of insecure # of insecure
cases contracts

CP.1 4,521 726
CP.2 80,825 25,470
CP.3 10,156 4,811

Total 95,502 28,621*

∗ Some contracts contain multiple insecure patterns.
CP.1: State Changes after External Calls
CP.2: Missing Checks for Out-of-Bound Arithmetic Ops
CP.3: Missing Checks for Failing External Calls

A. Experimental Setup

Dataset. To build a dataset of insecure contracts, we first
collected real-world smart contracts with source code available
on the Ethereum Mainnet (ETH). We used geth [30] to
synchronize the Ethereum network by January 2nd, 2019 and
downloaded a snapshot of the first 7,000,000 blocks contain-
ing 369,817,320 transactions. Since each contract is created
through sending a relevant transaction to an empty address
(i.e., address 0x0 on the blockchain), we thus distinguished
2,214,409 real-world contracts deployed on the Ethereum net-
work. Then, we referred to the Ethereum blockchain explorer–
Etherscan [31] to investigate the existence of source code
for these collected contracts and found 52,179 contracts that
have source code available online. With the source code, we
labeled the insecure code patterns defined in Section II-A.
We made use of state-of-the-art smart contract analysis tools
(e.g., Securify [6], Osiris [16], Mythril [17], etc.) to help
label insecure cases. By cross checking the results generated
by various tools and manually inspecting the source code of
controversial contracts, we finally built our dataset.

More specifically, our dataset contains 95,502 insecure
cases (4,521 cases with state changes after external calls,
80,825 cases with missing checks for out-of-bound arithmetic
operations, and 10,156 cases with missing checks for failing
external calls) in 28,621 contracts (as shown in Table II).

Environment. All experiments were carried out on a server
running 64-bit Ubuntu 18.04 with two Intel Xeon Gold 5122
processors (8 cores each at 3.60GHz) and 128GB RAM.

B. RQ1: Scalability

To answer RQ1, we evaluated SMARTSHIELD against all
28,621 insecure contracts in our dataset.

Semantic Extraction. Since the size of each smart contract
is limited to 0x6000 bytes [32], we set a timeout threshold
for semantic extraction as 30 minutes per contract. In total,
SMARTSHIELD successfully analyzed 27,476 (96.0%) out
of the 28,621 insecure contracts and extracted their bytecode-
level semantic information. For the remaining 1,145 contracts,
SMARTSHIELD failed to analyze them because of the
following reasons:

• Irregular control flows: The analysis of 773 (2.7%)
insecure contracts did not terminate within the timeout
limitation (i.e., 30 minutes). We found that these contracts
contain complicated and unstructured control flows [33]
(e.g., abnormal selection path, overlapping loops, parallel
loops), which are either generated by an older version
compiler or intentionally implemented by developers. It
is important to note that although some of these contracts
may be parsed successfully if we set a longer timeout
threshold, a timeout of 30 minutes is a reasonable time
trade-off throughout our experimental duration.

• Irresolvable target addresses: The analysis of 286
(1.0%) insecure contracts terminated half-way as these
contracts contain irresolvable target addresses. Mostly,
the target address of instruction JUMP or JUMPI is
pushed onto the stack in advance by the instruction
PUSH. However, in very rare cases, the target address is
computed depending on an input data, namely, calldata.
SMARTSHIELD is unable to resolve the concrete value
of such target address and thus fails to accomplish the
analysis. It is worth to mention that we can infer the
concrete values of these target addresses from histori-
cal transactions related to each contract. As SMART-
SHIELD is designed to revise insecure code patterns
existed in each contract before it is deployed to the
blockchain, no historical transaction is available at that
point. Therefore, in our experiments, we did not import
any historical transaction data from the blockchain to
address this issue.

• Malfunctions: 86 (0.3%) insecure contracts failed to
be analyzed due to their malfunctions. These malfunc-
tioning contracts perform illegal operations that cannot
be executed by the EVM. For example, an instruction
pops operands from an empty stack or pushes operands
onto a full stack. Interestingly, we observed that all these
contracts do not have any related historical transactions,
which indicates that they have been abandoned once be-
ing deployed to the blockchain. SMARTSHIELD does
not consider these malfunctioning contracts as protection
targets.

Contract Rectification. Given 95,502 labeled insecure cases
in the 28,621 contracts, SMARTSHIELD then fixed these
insecure cases and generate secure versions of contract EVM
bytecode. Table III presents the number of fixed insecure cases
and the number of rectified contracts, which includes fully
rectified and partially rectified ones. In our dataset, 87,346
(91.5%) insecure cases were fixed by SMARTSHIELD and
25,060 (87.6%) out of the 28,621 insecure contracts were fully
rectified. Besides, SMARTSHIELD marked 8,156 cases of
insecure code in the remaining 3,561 contracts as “unrecti-
fiable” because some potential side effects may be triggered
by the rectification. To guarantee that the rectification does
not introduce any potential side effects, SMARTSHIELD
adopted a conservative policy to report the unfixable insecure
cases to the developer without conducting any rectification.
Note that if an insecure contract contains both fixable and
unfixable insecure cases, SMARTSHIELD first fixes those
that are fixable and then sends the rest together with the
partially rectified contract to the developer.
Efficiency. SMARTSHIELD averagely spent 39 seconds to
analyze and rectify an insecure contract. For static code
analysis, SMARTSHIELD cost 28 seconds on average to ex-
tract bytecode-level semantic information from each contract,
and 89.2% contracts in our dataset were analyzed within 10
seconds. On average, SMARTSHIELD took 11 seconds to fix
the insecure cases in each contract and generate the rectified
contract.

C. RQ2: Correctness

To verify the correctness of the rectified contracts, we
first evaluated whether SMARTSHIELD actually fixed the
insecure code in contracts. We applied the most prevalent tech-
niques for analyzing smart contract, i.e., symbolic execution
and abstract interpretation, to examine each rectified contract.

In particular, we leveraged three state-of-the-art smart con-
tract analysis tools from both academia and industry, Secu-
rify [6], Osiris [16], and Mythril [17] to conduct the analyses.
These tools not only identify security bugs, re-entrancy bugs,
arithmetic bugs, unchecked return value bugs, respectively,
but also locate the corresponding problematic instructions.
These bug information are adequate for us to determine the
existence of the pre-defined three insecure code patterns. After
examining the outputs of those smart contract security analysis
tools, we confirmed that previously labeled insecure cases are
fixed in all rectified contracts, and each rectification does not
introduce any other insecure cases.

Second, we evaluated whether our rectified contracts could
defend against existing attacks. To replay such attacks, we
collected historical transactions that are related to each rec-
tified contract and retrieved the initial blockchain states of
these transactions via Infura [34], an Ethereum infrastructure
website. In total, we retrieved 22,527,186 related histori-
cal transactions. Then, we leveraged the open source EVM
instance included in the Go Ethereum [30] project to re-
execute contracts. We actually found suspicious historical
transactions (e.g., triggering the inserted DataGuards) targeting

TABLE III: RESULTS OF CONTRACT RECTIFICATION

Category # of eliminated # of uneliminable # of rectified contracts
cases cases Fully Partially

CP.1 3,567 954 573 153
CP.2 74,642 6,183 21,815 3,655
CP.3 9,137 1,019 4,362 449

Total 87,346 8,156 25,060* 3,561*

∗ Some contracts contain multiple insecure patterns.
CP.1: State Changes after External Calls
CP.2: Missing Checks for Out-of-Bound Arithmetic Ops
CP.3: Missing Checks for Failing External Calls

on 47 contracts. By manually inspecting the source code of
these contracts and the corresponding suspicious transactions,
we found that the execution of these transaction violate the
original intention of the insecure contracts. Fortunately, our
rectified contracts are not affected by those transactions any
more.

TABLE IV: EXISTING HIGH-PROFILE ATTACKS

Insecure contract Category Date of attack

DAO* [35], [36] CP.1 Jun. 17th, 2016 [25]
LedgerChannel [37] CP.1 Oct. 7th, 2018 [38]
BeautyChain [39] CP.2 Apr. 22nd, 2018 [26]
SmartMesh [40] CP.2 Apr. 24th, 2018 [41]
UselessEthereumToken [42] CP.2 Apr. 27th, 2018 [43]
Social Chain [44] CP.2 May 3rd, 2018 [45]
Hexagon [46] CP.2 May. 18th, 2018 [47]
KotET [48] CP.3 Feb. 6th, 2016 [49]

∗ The DAO and the DarkDAO contract are considered to be identical.
CP.1: State Changes after External Calls
CP.2: Missing Checks for Out-of-Bound Arithmetic Ops
CP.3: Missing Checks for Failing External Calls

In addition, we replayed exploits of existing high-profile
attacks4, as summarized in Table IV, against rectified versions
of those victim contracts. We collected the corresponding his-
torical attack transactions that exploited each insecure contract
and replayed them to attack its rectified version. Consequently,
all the rectified contracts were protected against the malicious
transactions. It demonstrates that SMARTSHIELD can pro-
tect smart contracts against the real-world threats effectively.

Finally, we validate whether the functionalities of each
rectified contract are still executed consistently. To conduct
the validation, we again used historical transaction data to
re-execute each rectified contract and checked whether the
implemented functionalities are executed still as the same.
Theoretically, the Ethereum blockchain can be deemed as a
transaction-based state machine. Contracts are triggered and
executed by transactions, and the blockchain states are updated
accordingly. Hence, we locally replayed the historical transac-
tions and monitored final blockchain states. We executed each
transaction twice, separately on the original and the rectified
contract based on the same initial blockchain state. Then we
compared the final blockchain states of these two executions. If
the final states of the transaction executed on both the rectified

4For instance, the infamous DAO attack [25] exploited the state changes
after external calls pattern in the DAO contract [35] and the Dark DAO
contract [36] on June 17th, 2016.

and the insecure contract are the same, the rectification will be
marked as “passed”. Otherwise, an inconsistency is reported.

Note that some popular contracts are related to a large
number of transactions (e.g., up to 3,078,930 transactions were
sent to a single contract). It is inefficient and unnecessary to
replay all these transactions. Therefore, under the premise that
a high code coverage is achieved, we chose a proper number
of transactions to replay for these contracts. We analyzed
100,000 transactions and observed that more than 70% code
of most contracts can be executed by replaying 50 historical
transactions. To balance the validation effectiveness and code
coverage, we randomly replayed 50 historical transactions for
each contract even if it involved more than 50 transactions.

In our evaluation, SMARTSHIELD replayed 268,939 his-
torical transactions. SMARTSHIELD identified that only 271
transactions produced divergent final blockchain states, in
which 60 out of the 28,621 rectified contracts are involved.
Except the malicious transactions that affected 47 contracts
and therefore caused divergent results, we found that the other
inconsistencies are due to an incompatible issue. The EVM
bytecode of 13 contracts are incompatible with the latest
EVM implementation, and thus cannot pass our replay. We
checked these contracts and discovered that they were created
before 2017 and have been abandoned for a long time. As
the Ethereum Mainnet has evolved significantly through hard
forks for upgrading, numerous improvements have been made
to the EVM (e.g., gas cost, exception handling). As a result,
these obsolete contracts are no longer supported by the latest
EVM implementation. Since SMARTSHIELD is to protect a
contract before its deployment, this incompatibility issue will
not affect our rectification in practice.

D. RQ3: Cost

To answer RQ3, we counted the number of instructions
inserted for each rectification and compared the gas con-
sumption before and after contract rectification. For each
rectified contract, SMARTSHIELD inserted 43.6 instructions
on average, and the average size increment of each contract is
around 1.0% (i.e., 49.3 bytes). SMARTSHIELD inserted an
average of 9.7 instructions to fix each insecure case.

We further compared the gas consumption of each rectified
contract and its corresponding insecure contract. We computed
the gas consumption of the 268,668 historical transactions
successfully replayed. Figure 7 depicts the increment of gas
consumption after our rectification. On average, the gas con-

237753

15307
7511

5628
2390

79
0% - 0.01%

0.01% - 0.1%

0.1% - 1%

1% - 10%

10% - 100%

100% - 1000%

(a) Consumption increment for replayed transactions

27077

779
534

205
26

0% - 0.01%

0.01% - 0.1%

0.1% - 1%

1% - 10%

10% - 100%

(b) Consumption increment for rectified contracts

Fig. 7: The increment of gas consumption after rectification

sumption for each rectified contract increases by 0.2%, that is,
64.0 extra units of gas (i.e., 0.00013 USD5) is required. For the
replayed historical transactions, the average gas consumption
increment for each transaction is around 35.4 extra units
(0.3%) of gas (0.00007 USD). More specifically, the incre-
ments for 94.4% transactions (i.e., 253,623 out of the 268,668
transactions) are less than 0.1%. This clearly demonstrates
SMARTSHIELD rectifies insecure contracts economically
because the gas consumption increments are negligible.

E. Manual Validation

To gain an in-depth insights against rectification results, we
randomly selected 200 insecure contracts to build the ground
truth and manually inspected their rectifications. Among these
contracts, there exist 126 cases of state changes after external
calls, 278 cases of missing checks for out-of-bound arithmetic
operations, and 188 cases of missing checks for failing external
calls. We asked a team of annotators (two research fellows and
two PhD students), all with more than three years of research
experience in code repair area, to check whether the rectified
contracts are correct. First, we asked the team members
to check the rectified contracts independently. Then, all the
members went through the results together and discussed those
that are marked differently to reach an agreement. After the
review, the team members confirmed that all the 592 insecure
code pattern cases in those contracts are fixed effectively. In
addition, they marked 194 contracts as “correctly rectified”
and the other six contracts as “controversial”.

For the six controversial cases, four of the insecure cases
are recognized to be intentionally introduced by the developer
to fulfill certain functionalities. For instance, a contract uses an
uint8 integer variable to implement a counter counting from
0 to 255. The developer intentionally omitted the overflow
checks for counter increment and reset the counter to zero
after reaching 256 through an overflow. As SMARTSHIELD
is unable to accurately infer the intention of the developer

5This price is calculated by the average gas price and the Ethereum (ETH)
price on January 2nd, 2019.

through code analysis, the priority of SMARTSHIELD is to
reduce the security risk of smart contracts.

1

2

3

4

5

6

7

8

9

10

11

mapping (address => uint) public balances;

bool private lockBalances;

...

function withdraw(uint amount) public {

 require(!lockBalances && balances[msg.sender] >= amount);

 lockBalances = true;

 if (msg.sender.call(amount)()) {

 ...

 }

 lockBalances = false;

}

Fig. 8: A controversial case of rectified contract

The remaining two controversial cases are labeled by the
analysis tools as vulnerable to re-entrancy attacks. However,
the developer implemented an alternative approach to protect
these contracts. The contract in Figure 8 is given as an
example. The withdraw function updates the state variable
lockBalances at line 10 after calling a function in an external
contract at line 7. The execution sequence of the state change
and the external call match the pre-defined insecure code
pattern – state changes after external calls. However, the state
variable lockBalances is a mutex that is introduced by the
developer to protect the contract against re-entrancy attacks.
The mutex is claimed at line 6 before the external call at line
7 and then released at line 10 after the call. SMARTSHIELD
moves the release at line 10 to the front of the external call
(line 7), which makes the mutex useless. Actually, our reviewer
agreed that the mutex used in this contract is not optimal and
may lead to new issues. For instance, the mutex may cause
deadlocks. Moreover, because of the operations of storage read
and write, the use of gas may also be significantly increased
when the mutex is claimed and released. In comparison,
SMARTSHIELD is designed to follow the best practice
of checks-effects-interactions [27], which makes the rec-
tification more concise and economical. When dealing with
such controversial cases, the rectification report generated by

SMARTSHIELD is valuable as a reference for the developer
to improve their code.

V. RELATED WORK

A. Bug Analysis in Smart Contracts

Smart contract are vulnerable to severe security bugs. In
many cases, these bugs are caused because of the fundamental
differences between execution environments of smart contracts
and traditional programs. Hence, it is difficult to develop
smart contracts correctly, even for a simple one [50]–[53].
To detect bugs in smart contracts, numerous approaches and
tools have been proposed recently. Based on their underlying
techniques, previous works are classified into four major
categories: symbolic execution, abstract interpretation, formal
verification, and run-time monitoring.
Symbolic Execution. Oyente [2] detects timestamp depen-
dence, transaction-ordering dependence, mishandled excep-
tions, and re-entrancy vulnerability in smart contracts by sym-
bolically analyzing their EVM bytecode. Similarly, teEther [3]
symbolically infers a sequence of state changing transactions
and a final critical transaction to create exploits for vulnerable
contracts, and Maian [54] identifies smart contracts that either
lock funds indefinitely, leak them carelessly to arbitrary users,
or can be killed by anyone. Since symbolic execution only
explores restricted execution paths, it is unsound to infer
semantic information declared in smart contracts. Instead,
SMARTSHIELD adopts an abstract execution to extract
semantic information as completely as possible.
Abstract Interpretation. Securify [6] uses the defined com-
pliance and violation patterns to describe the given secu-
rity properties. It then recognizes the conformance and non-
conformance to practical security properties in smart contracts.
Zeus [7] translates the source code into LLVM bitcode by
using a formal abstraction of Solidity execution semantics and
further verifies the correctness and fairness policies in smart
contracts.
Formal Verification. Bhargavan et al. [55] analyzed and
verified both the run-time safety and the functional correctness
of smart contracts by translating the Solidity source code into
F*. Grishchenko et al. [56] formally defined several crucial
security properties for smart contracts in F* and checked these
properties over smart contracts. Hirai et al. [57] proved some
safety properties of smart contracts in an interactive theorem
prover, Isabelle/HOL. Amani et al. [58] then extended the
formalization and defined a sound program logic to verify
smart contract at the bytecode level.
Run-Time Monitoring. Sereum [59] protects smart contracts
against re-entrancy attacks by monitoring their executions. It
performs taint tracking and introduces locks to state vari-
ables during smart contract executions. Besides, another smart
contract run-time monitor, ECFChecker [60], checks whether
a transaction violates a pre-defined general safety property,
effectively callback free (ECF). Both Sereum and ECFChecker
require modifications to the EVM, which causes extra execu-

tion overhead. Hence, these systems with modified EVM are
hard to be adopted by the Ethereum community in reality.

In Addition, ContractFuzzer [8] proposes a set of test
oracles and generates fuzzing inputs to test smart contracts.
Numerous EVM bytecode decompilers (e.g., Erays [61], Gi-
gahorse [62], Porosity [63], Vandal [64]) are also available to
support manual bug analyses on smart contracts.

B. Bug Repair

Given the identified bugs in smart contracts, we discuss
whether the existing patch approaches can be applied to rectify
vulnerable contracts. Based on the target code, bug patch
approaches are classified into two types: source-based [19],
[23], [24], [65], [66] and bytecode-based [21], [22], [67].
Source-Based Analysis. BovInspector [66] performs rule-
based patch to proceed buffer overflow in C programs. Based
on the predefined rules (i.e., adding boundary checks and
replacing unsafe APIs), BovInspector completes the path con-
ditions and the buffer overflow constraints in programs. To
patch bugs more effectively, Vurle [19] uses machine learning
algorithm to generates templates.
Bytecode-Based Analysis. Without accessing source code,
AppSealer [21] tracks the propagation of sensitive information
and inserts shadow statements to taint and block danger-
ous data flows. Similarly, CDRep [67] patches cryptographic
misuses based on the pre-defined templates. Both AppSealer
and CDRep are designed for Android apps. However, smart
contracts is far different from Android apps at the bytecode
level because EVM bytecode does not have the notion of
structs or objects, nor does it have a concept of methods [68].
Various relevant syntax and semantic information should be
considered simultaneously when patching a smart contract.

VI. CONCLUSION

We proposed SMARTSHIELD, an automatic bytecode rec-
tification system to fix insecure cases with insecure code pat-
terns in smart contracts. SMARTSHIELD extracts bytecode-
level semantic information and utilizes them to transform
insecure contracts into secure ones. Through using SMART-
SHIELD to handle 95,502 insecure cases in 28,621 real-world
buggy smart contracts with source code, We demonstrated
that SMARTSHIELD effectively fixed insecure cases and
generates secure bytecode.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable feedback. This work was partially supported
by the Key Program of National Natural Science Foundation of
China (Grant No.U1636217), the General Program of National
Natural Science Foundation of China (Grant No.61872237),
and the National Key Research and Development Program
of China (Grant No.2016QY071401). We especially thank
Ant Financial Services Group for the support of this research
within the SJTU-AntFinancial Security Research Centre.

REFERENCES

[1] “A major vulnerability has frozen hundreds of millions of dollars
of ethereum,” https://techcrunch.com/2017/11/07/a-major-vulnerability-
has-frozen-hundreds-of-millions-of-dollars-of-ethereum/.

[2] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. ACM, 2016, pp. 254–269.

[3] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automati-
cally exploit smart contracts,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 1317–1333.

[4] C. F. Torres and M. Steichen, “The art of the scam: Demystifying hon-
eypots in ethereum smart contracts,” arXiv preprint arXiv:1902.06976,
2019.

[5] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2019, pp. 531–548.

[6] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 67–82.

[7] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in 25th Annual Network and Distributed System
Security Symposium, NDSS, 2018, pp. 18–21.

[8] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[9] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, “Exploiting
the laws of order in smart contracts,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2019, pp. 363–373.

[10] “Security considerations,” https://solidity.readthedocs.io/en/latest/
security-considerations.html.

[11] “Ethereum smart contract security best practices,” https://consensys.
github.io/smart-contract-best-practices/.

[12] “Solidity security: Comprehensive list of known attack vectors and
common anti-patterns,” https://github.com/sigp/solidity-security-blog.

[13] “Decentralized application security project (or dasp) top 10 of 2018,”
https://www.dasp.co/.

[14] “Scanning live ethereum contracts for the ”unchecked-send” bug,”
http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-
contracts-for-bugs/.

[15] “25% of all smart contracts contain critical bugs,” https://news.bitcoin.
com/25-of-all-smart-contracts-contain-critical-bugs/.

[16] C. F. Torres, J. Schütte et al., “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference. ACM, 2018, pp. 664–676.

[17] “Mythril,” https://github.com/ConsenSys/mythril.
[18] “Watch out for insecure stackoverflow answers!” https://www.attackflow.

com/Blog/StackOverflow.
[19] S. Ma, F. Thung, D. Lo, C. Sun, and R. H. Deng, “Vurle: Automatic

vulnerability detection and repair by learning from examples,” in Euro-
pean Symposium on Research in Computer Security. Springer, 2017,
pp. 229–246.

[20] M. Monperrus, “Automatic software repair: a bibliography,” ACM Com-
puting Surveys (CSUR), vol. 51, no. 1, p. 17, 2018.

[21] M. Zhang and H. Yin, “Appsealer: automatic generation of vulnerability-
specific patches for preventing component hijacking attacks in android
applications.” in NDSS, 2014.

[22] M. T. Azim, I. Neamtiu, and L. M. Marvel, “Towards self-healing
smartphone software via automated patching,” in Proceedings of the
29th ACM/IEEE international conference on Automated software engi-
neering. ACM, 2014, pp. 623–628.

[23] Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie, “Autopag: towards
automated software patch generation with source code root cause
identification and repair,” in Proceedings of the 2nd ACM symposium
on Information, computer and communications security. ACM, 2007,
pp. 329–340.

[24] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Ieee transactions on
software engineering, vol. 38, no. 1, pp. 54–72, 2012.

[25] “Understanding the dao attack,” http://www.coindesk.com/
understanding-dao-hack-journalists/.

[26] “Alert: New batchoverflow bug in multiple erc20 smart contracts (cve-
2018-10299),” https://blog.peckshield.com/2018/04/22/batchOverflow/.

[27] “Use the checks-effects-interactions pattern,” https://solidity.
readthedocs.io/en/latest/security-considerations.html\#use-the-checks-
effects-interactions-pattern.

[28] “Solidity,” https://solidity.readthedocs.io/en/latest/.
[29] G. Wood et al., “Ethereum: A secure decentralised generalised transac-

tion ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.
[30] “Go ethereum,” https://github.com/ethereum/go-ethereum.
[31] “Ethereum (eth) blockchain explorer,” https://etherscan.io/.
[32] “Contract code size limit,” https://github.com/ethereum/EIPs/blob/

master/EIPS/eip-170.md.
[33] M. H. Williams, “Generating structured flow diagrams: the nature of

unstructuredness,” The Computer Journal, vol. 20, no. 1, pp. 45–50,
1977.

[34] “Scalable blockchain infrastructure,” https://infura.io/.
[35] “The dao contract,” https://etherscan.io/address/

0xbb9bc244d798123fde783fcc1c72d3bb8c189413.
[36] “The darkdao contract,” https://etherscan.io/address/

0x304a554a310C7e546dfe434669C62820b7D83490.
[37] “The ledgerchannel contract,” https://etherscan.io/address/

0xf91546835f756da0c10cfa0cda95b15577b84aa7.
[38] “Spankchain loses $40k in hack due to smart contract bug,”

https://www.coindesk.com/spankchain-loses-40k-in-hack-due-to-
smart-contract-bug.

[39] “The beautychain (bec) contract,” https://etherscan.io/address/
0xc5d105e63711398af9bbff092d4b6769c82f793d.

[40] “The smartmesh (smt) contract,” https://etherscan.io/address/
0x55f93985431fc9304077687a35a1ba103dc1e081.

[41] “New proxyoverflow bug in multiple erc20 smart contracts (cve-2018-
10376),” https://blog.peckshield.com/2018/04/25/proxyOverflow/.

[42] “The uselessethereumtoken (uet) contract,” https://etherscan.io/address/
0x27f706edde3ad952ef647dd67e24e38cd0803dd6.

[43] “Your tokens are mine: A suspicious scam token in a top exchange,”
https://blog.peckshield.com/2018/04/28/transferFlaw/.

[44] “The social chain (sca) contract,” https://etherscan.io/address/
0xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773.

[45] “New multioverflow bug identified in multiple erc20 smart
contracts (cve-2018-10706),” https://blog.peckshield.com/2018/05/
10/multiOverflow/.

[46] “The hexagon (hxg) contract,” https://etherscan.io/address/
0xb5335e24d0ab29c190ab8c2b459238da1153ceba.

[47] “New burnoverflow bug identified in multiple erc20 smart contracts (cve-
2018-11239),” https://blog.peckshield.com/2018/05/18/burnOverflow/.

[48] “The kotet contract,” https://etherscan.io/address/
0xb336a86e2feb1e87a328fcb7dd4d04de3df254d0.

[49] “Post-mortem investigation (feb 2016),” https://www.kingoftheether.
com/postmortem.html.

[50] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step
by step towards creating a safe smart contract: Lessons and insights
from a cryptocurrency lab,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 79–94.

[51] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International Conference on Principles of
Security and Trust. Springer, 2017, pp. 164–186.

[52] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting ponzi
schemes on ethereum: identification, analysis, and impact,” Future
Generation Computer Systems, vol. 102, pp. 259–277, 2020.

[53] I. Sergey and A. Hobor, “A concurrent perspective on smart contracts,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2017, pp. 478–493.

[54] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th Annual Computer Security Applications Conference. ACM, 2018,
pp. 653–663.

[55] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy et al., “Formal verification of smart contracts: Short paper,”
in Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security. ACM, 2016, pp. 91–96.

[56] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of ethereum smart contracts,” in Interna-
tional Conference on Principles of Security and Trust. Springer, 2018,
pp. 243–269.

[57] Y. Hirai, “Defining the ethereum virtual machine for interactive theorem
provers,” in International Conference on Financial Cryptography and
Data Security. Springer, 2017, pp. 520–535.

[58] S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying
ethereum smart contract bytecode in isabelle/hol,” in Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and
Proofs. ACM, 2018, pp. 66–77.

[59] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” arXiv preprint
arXiv:1812.05934, 2018.

[60] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, “Online detection of effectively callback free
objects with applications to smart contracts,” Proceedings of the ACM
on Programming Languages, vol. 2, no. POPL, p. 48, 2017.

[61] Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and M. Bailey,
“Erays: reverse engineering ethereum’s opaque smart contracts,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018, pp.
1371–1385.

[62] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse: Thor-

ough, declarative decompilation of smart contracts,” in International
Conference on Software Engineering (ICSE), 2019.

[63] M. Suiche, “Porosity: A decompiler for blockchain-based smart con-
tracts bytecode,” DEF CON, vol. 25, p. 11, 2017.

[64] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” arXiv preprint arXiv:1809.03981, 2018.

[65] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou, “Intpatch: Automat-
ically fix integer-overflow-to-buffer-overflow vulnerability at compile-
time,” in European Symposium on Research in Computer Security.
Springer, 2010, pp. 71–86.

[66] F. Gao, L. Wang, and X. Li, “Bovinspector: automatic inspection and
repair of buffer overflow vulnerabilities,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2016, pp. 786–791.

[67] S. Ma, D. Lo, T. Li, and R. H. Deng, “Cdrep: Automatic repair of
cryptographic misuses in android applications,” in Proceedings of the
11th ACM on Asia Conference on Computer and Communications
Security. ACM, 2016, pp. 711–722.

[68] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum smart
contracts,” Proceedings of the ACM on Programming Languages, vol. 2,
no. OOPSLA, p. 116, 2018.

