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Abstract
Memory corruption vulnerabilities are serious threats to soft-
ware security, which is often triggered by improper use of
memory operation functions. The detection of memory cor-
ruptions relies on identifying memory operation functions
and examining how it manipulates the memory. Distinguish-
ing memory operation functions is challenging because they
usually come in various forms in real-world software. In this
paper, we propose NLP-EYE, an NLP-based memory corrup-
tion detection system. NLP-EYE is able to identify memory
operation functions through a semantic-aware source code
analysis automatically. It first creates a programming lan-
guage friendly corpus in order to parse function prototypes.
Based on the similarity comparison by utilizing both seman-
tic and syntax information, NLP-EYE identifies and labels
both standard and customized memory operation functions. It
uses symbolic execution at last to check whether a memory
operation causes incorrect memory usage.

Instead of analyzing data dependencies of the entire source
code, NLP-EYE only focuses on memory operation parts.
We evaluated the performance of NLP-EYE by using seven
real-world libraries and programs, including Vim, Git, CPython,
etc. NLP-EYE successfully identifies 27 null pointer de-
reference, two double-free and three use-after-free that are
not discovered before in the latest versions of analysis targets.

1 Introduction

The memory-unsafe programming languages, such as C and
C++, provide memory operation functions in the standard
library (e.g., malloc and free) to allow manipulating the
memories. During the development process, developers could
implement dynamic memory operation functions by their own
memory management policies to achieve higher performance,
or by wrapping the standard memory operation functions
with additional operations to fulfill other purposes (e.g., print
debugging information).

Mistakes made by misusing the memory operations lead to
well-seen memory corruption vulnerabilities such as buffer-

overflow and double-free in real-world software and their
number is steadily increasing. For customized memory opera-
tion functions, some private memory operation functions are
poorly implemented and thus carry some memory vulnera-
bilities at birth. On the other hand, developers keep making
common mistakes, such as using the memory after it has been
released (i.e., the use-after-free vulnerability), during the de-
velopment process. Both cases aggravate the emerging of
memory corruption vulnerabilities, which endow the attack-
ers higher chance of compromising a computer system. A
recent report of Microsoft demonstrated that around 70 per-
cent of vulnerabilities in their products are memory safety
issues [14].

To identify memory corruptions, various analysis methods
using different kinds of techniques have been proposed. For
instance, code similarity detection and information flow anal-
ysis are proposed to identify memory safety issues in source
code [29] [45] [42]. Some tools such as AddressSanitizer
[41], Dr. Memory [22] can also detect memory corruptions in
binary code by instrumentation. These analyses require to ab-
stract the usage of memory, and then extract certain patterns
that are related to memory corruption. Otherwise, analyzing
a program with millions of lines of code is inefficient and
error-prone.

Customized memory operations could not help to decrease
the chance of memory corruption at all, and moreover, the
customized functions cause great difficulty in memory cor-
ruption analysis. Previous works, such as CRED [45], Pin-
point [42] and Dr. Memory [22], only consider the memory
operation functions defined in the standard library. They are
unable to identify customized memory operation functions,
and thus disregard vulnerabilities caused by customized func-
tions. Manual efforts can be involved to identify and label
those functions, but it is exhausted and time consuming.

To address the above problems, we propose NLP-EYE, a
source code-based security analysis system that adopts natu-
ral language processing (NLP) to detect memory corruptions.
NLP-EYE will only parse the function prototypes instead
of analyzing implementation of the functions. It then applies
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symbolic execution to check whether the corresponding mem-
ory usages are correct. Unlike the other tools [1], the accuracy
of NLP-EYE in memory operation function identification
helps reduce the time cost by only analyzing partial code
snippets and facilitate a better detection performance.

NLP-EYE reports typical memory corruption vulnerabili-
ties, i.e., null pointer de-reference, double-free and user-after-
free in seven open source software, such as Vim and Git.NLP-
EYE has found 49 unknown vulnerabilities from their latest
versions. For source code with more than 60 thousand of
function prototypes, NLP-EYE is able to parse every ten
thousand functions in one minute and finish the memory op-
eration checking within an hour.
Contributions. Major contributions of this paper include:
• We proposed a source code-based analysis system that

detects vulnerabilities by only analyzing a few function
implementations, i.e., function prototypes and comments.
Since these information are usually available, it is helpful
for analysts and developers to build secure software with
limited details.

• We implemented a vulnerability detection tool, NLP-
EYE, that discovers memory corruption vulnerabilities
effectively and efficiently. By combining NLP and sym-
bolic execution, NLP-EYE labels both standard and cus-
tomized memory operation functions and records states
of the corresponding memory regions.

• We analyzed the latest versions of seven libraries and pro-
grams with NLP-EYE, and identified 49 unknown mem-
ory corruption vulnerabilities with 32 of them caused
by customized memory operation functions. It demon-
strates that the semantic-aware identification of NLP-
EYE helps find new vulnerabilities that are unseen be-
fore.

Structure. The rest of the paper is organized as below: Sec-
tion 2 lists the challenges of identifying memory corruptions
caused by customized memory operation functions, and pro-
vide corresponding insights to solve these challenges. Sec-
tion 3 details the design of NLP-EYE. In Section 4, we
reported new vulnerabilities found by NLP-EYE, and illus-
trated the experiment results covering both vulnerability de-
tection accuracy and performance comparison with the other
tools. Section 5 discusses related works. We conclude this
paper in Section 6.

2 Background

We give a concrete example of memory corruption vulnera-
bility in Figure 1. Followed by that, we point out some chal-
lenges that hinders the detection of such vulnerabilities, and
give corresponding insights to address those challenges.

2.1 Running Example
Detecting a memory corruption vulnerability (e.g., use-after-
free) requires three significant steps: 1) identifying memory
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//functions are provided by TTL module to operate dynamic memory

void  TTLreleaseMem2Pool(Pool *pool, MemRegion p)

{

    return pool->destroy_func(p);

}

MemRegion  TTLretrieveMemFromPool(Pool *pool, size_t len)

{

    return pool->alloc_func(len);

}

//memory pool used to provide dynamic memory region manipulation

extern Pool globalPool; 

int main(int argc, char **argv, char **env)

{

    char content[100];

    scanf("%s",content);

    char* buf = (char*)TTLretrieveMemFromPool(&globalPpool,1000);

    int ret = processContent(content,buf);

    if(!ret)

    {

        err("error occurs during process content!");

        TTLreleaseMem2Pool(&globalPool,(MemRegion)buf);

        goto clean;

    }

    ...

    clean:

        TTLreleaseMem2Pool(&globalPool,(MemRegion)buf);

}

Figure 1: Double-free vulnerability caused by the customized
memory operation functions

operation functions and labeling dynamically allocated mem-
ory regions; 2) tracing the allocated memory regions to un-
derstand how they are operated; and 3) detecting incorrect
operations on allocated memory regions. However, existing
vulnerability detection techniques barely consider customized
memory operation functions, and thus fail to detect vulnera-
bilities triggered by them.

The customized memory operation functions has caused
the memory corruption vulnerability in Figure 1. Instead
of using the standard memory operation functions provided
by C standard library, functions TTLretrieveMemFromPool
and TTLreleaseMem2Pool are used to allocate a dynamic
memory (Line 18) and release the corresponding allo-
cated memory (Line 23), respectively. While executing,
TTLreleaseMem2Pool releases the memory if the function
processContent returns a null value (Line 20); then, a du-
plicate release (Line 28) causes a double-free vulnerability.
Consider this double-free vulnerability, it cannot be detected
by simply analyzing standard memory operation procedures
because of the customized memory operation functions (i.e.,
TTLreleaseMem2Pool and TTLretrieveMemFromPool). 1

Generally, whether a function is a memory operation func-
tion, we can observe whether it calls C standard library mem-
ory operating functions, or compare the similarity with other
memory operation function implementations. In either case,
it requires the function implementation which is usually not

1Actually we have applied typical tools such as Cppcheck [2] and Visu-
alCodeGrepper [18] to detect the vulnerability in this sample and found
that none of them could detect this vulnerability.
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void  TTLreleaseMem2Pool ( Pool * pool, MemRegion  P )

//functions are provided by TTL module to operate dynamic memory

Figure 2: A function prototype with comments

available. For example, the declared memory operation func-
tion, alloc_func() (Line 8) might be implemented exter-
nally and only its binary is available. Under such circum-
stance, the semantic information in a function prototype (i.e.,
function declaration) becomes the only reference for the mem-
ory operation function identification.

As Figure 2 depicts, a function prototype consists of a func-
tion type, a function name, argument types for arguments, and
(optionally) names of arguments. While defining a function
prototype, developers prefer to use meaningful function name
and proper data types for this function. Besides, developers
may add comments to describe in more details.

In most cases, function prototypes and comments help us
to determine the semantics without knowing function imple-
mentations. Therefore, we can analyze prototype structures
to retrieve meanings of those words.

2.2 Challenges

Most challenges lie in understanding the function semantics
and identify memory operation functions accurately.

Challenge I: Irregular Representations. Searching for spe-
cific words in the source code is the common strategy to
identify functions, such as locating the keyword memory to
identify memory operation functions. While plenty of abbre-
viations and informal terms are used in function prototypes,
it is difficult to extract the semantic information effectively
by only applying a keyword-based searching strategy.

Consider the function prototype TTLreleaseMem2Pool in
Figure 1. An abbreviation Mem2 represents memory to in an
informal way. The abbreviation Mem is unable to be located
by using the word memory, and the number 2 makes it harder
to understand the semantics of the phrase.

Challenge II: Ambiguous Word Explanations. Since the
context collected from function prototypes is insufficient, it
makes the semantics extraction more challenging. Although
some function prototypes may use the same word, the actual
function semantics can be different because of their various
naming formats.

Considering two function names, PyObject_Malloc and
_PyObject_DebugMallocStats, in the source code of
CPython2, the former function is for allocating a dynamic
memory while the latter one is for outputting debugging in-
formation of memory allocator.

2CPython is the reference implementation of Python.

Even though the lexical analysis with a specific dictionary
can help split the word malloc from those two function names,
the corresponding function semantics cannot be inferred pre-
cisely. For the function PyObject_Malloc, the word mal-
loc does represent memory allocation; however in function
PyObject_DebugMallocStats, malloc is used to qualify the
object, that is Stats, to illustrate the status of the memory allo-
cator. Therefore, we need not only analyze the meaning but
also the format of the word to construct the function proto-
type.
Challenge III: Diverse Type Declaration. Diversified data
types declaration in C/C++ programming makes it harder to
compare two function prototypes. For instance, both short
and unsigned short int, are used to represent the Integer
type. Besides, C/C++ has provided a type re-define feature
(i.e., typedef) that programmers can shorten the name of a
complex type.

2.3 Insights
Fortunately, function prototypes are constructed by follow-
ing some certain formats in programming. We utilize these
formats to extract the semantic information.
Adaptive Lexical Analysis. Irregular representations make
the function prototype segmentation even harder. A natural
language corpus is not suitable for word segmentation in com-
puter programming. Thus, we construct an adaptive corpus to
address the problem of the lexical analysis in Challenge I. The
corpus consists of natural language used in computer science,
common keywords in the programming language (e.g., proc,
ttl) and comments in the source code. Common keywords
reveal the words that are often used in programming, and com-
ments in the source code suggest some semantic information
of a function.
Grammar-free Comparison. By examining the function
prototypes manually, we observe that developers do not usu-
ally follow English grammars when naming a function. How-
ever, they still use similar words (e.g., get, acquire, alloc)
with similar grammatical order (i.e., the order of words), such
as AcquireVirtualMemory and getMemfromPool. We then
propose a grammar-free analysis, which performs an NLP-
based comparison, to solve Challenge II.

To identify the semantic information of each function pro-
totype, we create a set of reference functions (e.g., standard
memory operation functions), whose semantics are known.
Then, we compare the function name and argument names
of each function prototype with the corresponding names in
reference functions. If the similarity between a function pro-
totype and a reference function is higher than a threshold, we
label this function prototype as a potential memory operation
function, and proceed with the type comparison to confirm.
Various Types Clustering. NLP-based comparison only
helps decide whether a function prototype is a potential mem-
ory operation function. We design a type comparison scheme
to handle its declared return type and argument types. Be-
cause of the diversity of function types, we first normalize
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Figure 3: System overview of NLP-EYE

those types in aliases (e.g., types defined by typedef) by
using their original forms, which solve Challenge III. Having
the pair of a function prototype and its matched reference
function, we then compare their return types and argument
types. We assume a function prototype as a memory operation
function if both names and types are matched.

3 Design of NLP-EYE

We propose NLP-EYE, a source code analysis system that
utilizes NLP to retrofit the process of the memory corruption
vulnerability detection. There are three phases: preprocess-
ing, semantics extraction, and vulnerability detection in
NLP-EYE. Figure 3 illustrates the overview of NLP-EYE.
It takes source code files as inputs, i.e., the analysis target.
The preprocessing phase extracts function prototypes and
comments to generate an adaptive corpus. The semantics ex-
traction phase uses the adaptive corpus to build a matching
list by collecting all the possible memory operation functions
in the analysis target. Vulnerability detection phase labels
memory operation functions in the target and feeds it to the
symbolic execution to facilitate the vulnerability detection.
We introduce the working details of each phase below.

3.1 Preprocessing

NLP-EYE takes a batch of source code as inputs and gener-
ates function prototypes and an adaptive corpus to perform
adaptive lexical analysis. First, NLP-EYE extracts function
prototypes and comments from source code. Then, it com-
prises comments with the other two corpuses to construct an
adaptive corpus. Details are presented below.

3.1.1 Feature Extraction

Feature extraction component of NLP-EYE is built on top of
Clang Static Analyzer plugin [1], which provides an interface
for users to scan the declaration of each function. Given the
source code, NLP-EYE uses this plugin to extract all function
prototypes in the format of "Type@Name", including those
functions that are imported from other libraries. For comments
from source code, NLP-EYE uses regular expressions to
match comment symbols in C language.

3.1.2 Corpus Generation

After collecting those comments, NLP-EYE constructs an
adaptive corpus to perform adaptive lexical analysis. The
adaptive corpus includes three parts, that are Google Web
Trillion Word Corpus (GWTWC) [7], MSDN library API
names [21] [20], and comments from source code.

The GWTWC is a popular corpus created by Google, con-
taining more than one trillion words extracted from public
web pages. It can be applied to identify common words used
in natural languages. With the help of MSDN library API
names and comments, NLP-EYE can process programming
languages. The MSDN library provides normalized APIs
in Camel-Case format. Therefore, it is easy to divide each
function name into words/abbreviations through capital let-
ters. For example, function GetProcAddress can be divided
into ["Get","Proc","Address"]. While processing comments
from source code, NLP-EYE first filters the symbol char-
acters (e.g., #%!), and then splits text by applying regular
expressions. Numbers and words appeared in GWTWC are
excluded.

Since abbreviations are commonly used in programming,
we set the appearance frequency of MSDN APIs to be higher
than the appearance frequency of comments, to provide them
a higher priority. We further assume that a word, who is a

4



substring of another word in MSDN API names, should have
a lower frequency than its parent word. For example, arm
in function mallocWithAlarm is a substring of Alarm, obvi-
ously Alarm is to be regarded as a whole; then we assign a
lower frequency for arm than for Alarm.

3.2 Semantics Extraction
NLP-EYE compares each function prototype with a set of
reference functions (e.g., malloc, free), and generates a func-
tion matching list. When a match was found in the function
matching list, we can infer the semantics from the function
prototype that it has the similar semantics with the reference
function.

NLP-EYE processes the data type and the function name,
arguments name separately to identify memory operation
functions in two steps. First, it divides the function name and
arguments name into a serial of words. Next, it performs NLP-
based comparison to select the potential function prototypes
with memory operation functionalities and confirm the results
by applying type comparison.

3.2.1 Function Prototype Segmentation

To proceed function prototype segmentation, NLP-EYE ap-
plies Segaran et al.’s word segmentation algorithm [40] to
select the segmentation list with the highest list frequency.

Given a function prototype (FP), with n letters, NLP-EYE
first creates 2n−1 possible combinations of these letters and
constructs 2n−1 segmentation lists. Each segmentation list
reserves the original order of these letters appeared in the FP.
NLP-EYE then computes the list frequency for each seg-
mentation list. It compares each word (wi) in a segmentation
list (SL) with words in the adaptive corpus, and returns the
following list frequency (LF):

LF =
|SL|
∏

i = 1
f req(wi)

where |SL| represents how many words are contained in
SL, and f req(wi) is the frequency of wi in the adaptive corpus.
Finally, NLP-EYE considers the segmentation list with the
highest list frequency as its segmentation result.

3.2.2 Function Prototype Matching

Due to the diversity of type declaration, NLP-EYE processes
names (i.e., function names and argument names) and types
(i.e., return types and argument types) separately. It performs
NLP-based comparison to identify those names that are re-
lated to memory operation functionalities. NLP-EYE then
applies type comparison to determine memory operation func-
tions and generates a function matching list.
NLP-based Comparison. Natural language processing
(NLP) has been widely used to identify the connection be-
tween two words for semantic similarity matching. To mea-
sure the word similarity, a context corpus is required to extract

the taxonomy information. Words in the context corpus are
then represented by sets of vectors in Word2vec [35] model.
The cosine distance between two words positively related to
their semantic similarity, and a higher cosine distance repre-
sents a higher similarity between two words.

To extract the semantic meaning of an unknown name, we
generates a set of reference functions manually, which con-
tains standard memory operation functions provided by C/C++
and other known memory operation functions. Having those
reference functions, NLP-EYE compares the name of an un-
known function with the names of the reference functions and
calculate their similarity scores. If a similarity score is higher
than a threshold, NLP-EYE labels this unknown function as
similar to the reference function, that is, the corresponding
function is a potential memory operation function.

We address function names and argument names individ-
ually, since the comparison results of function names and
argument names may interfere each other while applying the
NLP-based comparison. Consider a function with only abbre-
viations for function names, but complete words for argument
names, its similarity score may not achieve the threshold.
Although the similarity score of the argument names is the
highest, the total similarity score will be impacted by the
low similarity of function names. Therefore, we set different
similarity threshold, fn-similarity and arg-similarity, as the
threshold of function names and argument names, respectively.
Only when fn-similarity and arg-similarity are both satisfied,
NLP-EYE will label the function. For function arguments,
NLP-EYE compares each argument of the reference func-
tion with every argument of the target function and generates
similarity score. Then NLP-EYE chooses the most similar
one as the corresponding arguments regardless of the number
of arguments.

Type Comparison. Given the potential memory operation
functions and their matched reference functions, NLP-EYE
compares their data types correspondingly. We use Clang
Static Analyzer to classify the data types into several cate-
gories to address the type diversity.

First, NLP-EYE normalizes data types. Some data types
are re-defined as aliases by typedef. Thus, NLP-EYE uses
the original data types to replace those aliases. Second, we
define some coarse grained categories based on the basic data
types in C programming. NLP-EYE finally suggests the cor-
rect category for each data type. For example, unsigned int
and signed short are assigned to the category of Integer.
void * and char * belong to the category of pointer.

We compare the return type and corresponding argument
types of the potential memory operation function with data
types of the matched reference function. If their types are
assigned to the same category, the unknown function is a
memory operation function, and it is assumed to have the
same semantics as the corresponding reference function. Each
pair of a function prototype and its matched reference function
is inserted to the function matching list.
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3.3 Vulnerability Detection

NLP-EYE creates a vulnerability report for each source code
by comparing the usages of memory operation functions with
the pre-defined function misuses. NLP-EYE first labels mem-
ory operation functions in the source code; then, NLP-EYE
checks whether there exists any function misuse.

3.3.1 Function Labeling

NLP-EYE takes the function matching list as an inputs to
identify memory operation functions. It compares functions
in the source code with the functions in the function matching
list. If a function appears in the function matching list, NLP-
EYE labels this function as a memory operation function.

3.3.2 Symbolic Execution

The code, that can be compiled independently, is regarded as
an unit. NLP-EYE first generates the call graph for each unit
and then executes each unit from top to bottom one by one by
adopting symbolic execution.

The output of semantics extraction is a function matching
list which maps the standard memory operation functions and
its corresponding customized memory operation functions.
Given this function matching list, NLP-EYE dynamically
instruments stubs before function calls memory operation
and memory access points in advance to record and revise
memory region states. NLP-EYE identifies memory opera-
tion function calls by simply comparing the called function
name and the function names in the function matching list.
The stubs are extra code snippets that are executed before
the symbolic execution engine measuring the instrumented
statements. We manually made up a coarse function misuse
list which contains general function misuse implementations,
such as a memory region can not be released more than once
and a memory region can not be accessed after being released.
Given this list, once symbolic execution reaches any memory
access point or any function call site of a memory opera-
tion function, NLP-EYE executes the instrumented stub and
checks misuses. If it meets a misuse, NLP-EYE will report
this misuse as a vulnerability. Otherwise, the correspond-
ing memory state will be updated (i.e., allocated or released)
based on the function call of the memory operation function.
For instance, the source code in figure 1, NLP-EYE instru-
ments before line 18, 23 and 28 since the called functions
are identified as memory operation functions. Then during
symbolic execution, NLP-EYE records that a memory region
is allocated in line 18 and released in line 23. When symbolic
execution reaches line 28, it recognizes that a memory region
(i.e., buf) is to be released twice which is one of the given
function misuses, therefore NLP-EYE reports a double-free
vulnerability.

Lines of code # of
functions

# of memory
operation functions

Vim-8.1 [17] 468,133 16,012 73
ImageMagick-7.0.8-15 [9] 514,472 14,636 79
CPython-3.8.0a0 [3] 556,950 12,000 66
Git-2.21.0 [4] 289,532 8,788 32
GraphicsMagick-1.3.31 [8] 369,569 7,406 29
GnuTLS-3.6.5 [6] 488,654 5,433 11
LibTIFF-4.0.10 [11] 85,791 1,326 4

Total 2,773,101 65,601 294

Table 1: Lines of code, number of functions and number of
memory operation functions collected from each library/pro-
gram.

4 Evaluation

In this section, we report the results of four experiments. The
first experiment assesses the performance of function proto-
type segmentation. The second demonstrates the accuracy of
NLP-EYE while identifying memory operation functions,
and whether the context corpus has any impact on the identifi-
cation accuracy. The third experiment looks into the vulnera-
bility detection ability of NLP-EYE, and the last experiment
discusses its runtime performance.

4.1 Experiment Setup
Dataset. We collected the latest version of seven popular open
source libraries and programs written in C/C++ programming
language with a total of 65,601 functions by December 2018
(see Table 1 for more details).

Due to the lack of open source labeled memory operation
functions, we created our benchmarks. For identifying mem-
ory operation functions, we asked a team of annotators (3
programmers), all with more than seven years of program-
ming experience in C/C++ to examine the implementations of
memory operation functions. We first required team members
to label memory operation functions independently, and then
all members checked the results together. If there were any
function with different labels, team members would discuss
an agreement to label this function before it could be included
in the dataset. In this procedure, we found 294 memory oper-
ation functions in total.

Implementation. We evaluated NLP-EYE on a Ubuntu
16.04 x64 workstation with an Intel Core i7-6700 CPU (four
cores, 3.40 GHz) and 64 GB RAM. For the function proto-
type segmentation, we used NLTK [33], a natural language
processing toolkit, to create the adaptive corpus for segmen-
tation. We used the WordSegment [15] module in Python to
split function prototypes. Gensim [38] is set up for NLP-based
comparison, which conducts the similarity comparison based
on the context corpus. Finally, we adopted Clang Static Ana-
lyzer [1] to perform type comparison and symbolic execution.
Clang Static Analyzer is a a source code analysis tool which
adopts symbolic execution to analyze each translation unit. It
provides a framework that developers can intercept the sym-
bolic execution process at specific points such as function call
and memory access. In addition, Clang Static Analyzer provide
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useful programming interfaces that can be used by developers
to interact with the data type.

4.1.1 Experiment Design

To evaluate the effectiveness and efficiency of NLP-EYE, we
present the designed four experiments in details below.
EX1 (Prototype Segmentation). To evaluate the effective-
ness of prototype segmentation, we measured the Levenshtein-
inspired distance [30] [39] of the segmentation results as our
evaluation metrics. The distance between two segmentation
lists i and j of string s is given by di j, which can be calculated
as:

di j =
|s|−1

∑
k=1

(veci[k] xor vec j[k])

where |s| represents the length of string s. Segmentation
lists i and j are converted into vectors, veci and vec j. In each
vector, zero is regarded as “without split”, and one is “split”.

For the Levenshtein-inspired distance, a lower distance with
the correct one indicates that the segmentation list requires
fewer edit operations (i.e., split and merge) to be adjusted
to the correct one. Thus, a lower distance specifies a better
segmentation result.
EX2 (Memory Operation Function Identification). NLP-
EYE identifies memory operation functions by using NLP-
based comparison and type comparison. We evaluated the
function identification performance by using precision, recall
and F-measure as the evaluation metrics.
EX3 (Vulnerability Detection). We targeted on typical mem-
ory corruption vulnerabilities in this paper, i.e., double-free,
use-after-free, and null pointer de-reference against real world
software products such as Vim and CPython. To evaluate the
effectiveness of NLP-EYE, we further compared it with the
other four vulnerability detection tools (MallocChecker [13],
Cppcheck [2], Infer [10] and SVF [43]), and counted the number
of vulnerabilities that are correctly detected.
EX4 (Runtime Performance). We evaluated the average
time cost of each phase in NLP-EYE, including preprocess-
ing, semantics extraction, and vulnerability detection.

4.2 Ex1: Prototype Segmentation
Before we start, we manually split the function names we col-
lected as the ground truth. We counted the number of function
names that are correctly segmented, and then calculated the
Levenshtein-inspired distance to evaluate the performance of
each segmentation. Further, we compared the segmentation
results that are generated by the adaptive corpus of NLP-
EYE with the corresponding results generated by Google
Web Trillion Word Corpus (GWTWC). It assesses the result
accuracy while applying the adaptive corpus.

NLP-EYE correctly segments 230 out of 350 function
names. Levenshtein-inspired distances of those function
names are zero. Figure 4 demonstrated the average dis-
tance of each library and program by using the adaptive
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Figure 4: Segmentation results of function names by using
NLP-EYE and GWTWC

corpus of NLP-EYE and GWTWC. NLP-EYE segments
function names of Vim, ImageMagick, CPython, Git, Graphics-
Magick,GnuTLS and LibTIFF accurately with the Levenshtein-
inspired distance as 0.96, 0.16, 0.3, 0.3, 0.42, 0.63 and 0.86
respectively. The results for LibTIFF and Vim are worse than the
others, because lots of function names involve single letters,
and NLP-EYE cannot distinguish those letters from a word.

Except for GraphicsMagick and ImageMagick, the adap-
tive corpus-based segmentation performs better than the
GWTWC-based segmentation. According to our manual in-
spection, we found that GWTWC is not a programming
language-based corpus and it cannot proceed programming ab-
breviations. Thus, most of its segmentation results are worse
than the results of the adaptive corpus-based segmentation.
However, this conclusion is not satisfied on GraphicsMagick,
because some function names are incorrectly divided into
abbreviations by the adaptive corpus. Taken a function name
preview as an example, it is divided into [“pre”, “view”]
instead of “preview”, because the frequencies of those two
abbreviations are higher in comments. For the ImageMagick,
most function names are declared in normalized words, which
are easy for GWTWC and the adaptive corpus to distinguish
each word.

4.3 Ex2: Memory Operation Function Identi-
fication

We counted the number of memory operation functions that
are correctly detected by NLP-EYE and computed the preci-
sion, recall, and F-measure on the entire dataset. To conduct
this experiment, we separately set the thresholds (fn-similarity
and arg-similarity) as (0.3, 0.4, 0.5) for function names and
argument names, and found that NLP-EYE performs the
best when fn-similarity and arg-similarity are 0.4 and 0.5,
respectively.
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# of
identified functions

# of correctly
identified functions Precision Recall F-measure

Vim 304 42 13% 57% 21%
ImageMagick 137 44 32% 55% 40%
CPython 131 48 36% 72% 48%
Git 46 8 17% 25% 20%
GraphicsMagick 69 16 23% 55% 32%
GnuTLS 74 4 5% 36% 8%
LibTIFF 8 0 0 0 0

Total 769 162 21% 55% 30%

Table 2: Memory operation function identification results of NLP-EYE

NPD DF UAF
Detected Confirmed Detected Confirmed Detected Confirmed

Vim 17 17 2 1 8 2
CPython 10 4 1 1 8 1
Git 1 1 0 0 0 0
GraphicsMagick 6 5 0 0 0 0

Total 34 27 3 2 16 3

Table 3: Detection results of null pointer de-reference (NPD), double-free (DF) and use-after-free (UAF). Note that this result
only shows the vulnerabilities caused by customized memory operation functions.

Function Identification Results. We applied the StackOver-
flow corpus for NLP-based comparison. All the posts from
the StackOverflow forum [16] are included in the Stack-
Overflow corpus. Table 2 shows the best identification re-
sult with the number of identified functions and the number
of memory operation functions that are correctly identified.
We also computed precision, recall, and F-measure of NLP-
EYE. NLP-EYE correctly identifies 162 memory operation
functions out of the 769 identified functions, with precision,
recall, F-measure value of 21%, 55%, and 30%, respectively.
For LibTIFF, NLP-EYE cannot detect any memory operation
functions because many single letters are used to name a
function argument. For example, “s” is commonly used to ex-
press “size” that causes the recognition of memory operation
functions even harder if the thresholds are too high. We then
determine a balance between the thresholds (i.e., fn-similarity
and arg-similarity) and the identification accuracy.

Within millions of functions, NLP-EYE narrows down
the number of functions that need to be analyzed, and the
total number of functions for manual analysis is acceptable.
Furthermore, the false positive and the false negative are rea-
sonable.
Context Corpus Selection. We further applied NLP-based
comparison on two extra context corpuses (i.e., Wikipedia
corpus, and customized corpus) to assess the identification per-
formance. The Wikipedia corpus contains all webpages from
Wikipedia [19]. Alternatively, the customized corpus consists
of: 1) Linux man pages [12]; 2) Part of GNU Manuals [5];
and 3) two programming tutorials, i.e., C++ Primer [32] and
C Primer Plus [37].

Based on the Wikipedia corpus, NLP-EYE only identi-
fies no more than ten memory operation functions in each
library and program with a precision value of 7%, and a worse
recall value. While using customized corpus as the context
corpus, the precision and recall of NLP-EYE are 42% and
19%, respectively. Although its precision is acceptable, it still
causes too many false negatives. By manually analyzing the
results, we found that Wikipedia corpus is insensitive to the
programming language, and most identified functions are un-
related to memory operation. For the customized corpus, it
fails to identify functions that use abbreviations, which cause
exceptions if words are not found in the corpus.

4.4 Ex3: Vulnerability Detection
We tested NLP-EYE on the seven libraries and programs to
examine whether there is any unknown memory corruption
vulnerability. Note that the seven collected libraries and pro-
grams are the latest versions (collected in December 2018).

Vulnerabilities Detected by NLP-EYE. NLP-EYE detects
49 vulnerabilities from these libraries and programs in total.
While only considering vulnerabilities caused by customized
memory operation functions, four libraries and programs are
involved. The detection result is shown in Table 3. By manu-
ally verifying these results, NLP-EYE successfully detects
32 vulnerabilities, including 27 null pointer de-reference, two
double-free, and three use-after-free, existed in customized
memory operation functions. To further verify the correctness
of our results, we reported the manual-confirmed vulnerabili-
ties to developers, and they have confirmed and patched ten
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NLP-EYE MallocChecker Cppcheck Infer SVF

Vim 3.82 2.77 18.90 51.28 50.92
ImageMagick 6.16 5.00 28.00 64.25 0.25
Cpython 8.31 7.70 1.47 23.43 0.26
Git 3.11 2.80 0.88 13.52 2.36
GraphicsMagick 2.08 1.45 11.83 8.75 0.15
GntTLS 2.75 2.33 9.65 11.13 0.11
LibTIFF 0.91 0.87 0.93 3.55 0.04

Total 27.14 22.92 71.66 175.91 54.09

Table 4: Runtime performance comparison (minutes)

null pointer de-reference and all the double-free, use-after-free
vulnerabilities. Each customized memory operation function
may cause vulnerabilities, since NLP-EYE failed to identify a
part of them, this may lead to a false negative of vulnerability
detection result. Besides the successfully detected vulnerabil-
ities, NLP-EYE made false positive as well listed in Table 3.
However, after we manually inspected the false positive, we
found that none of them are caused by the wrong identification
result.

There are two reasons that cause the false positive: 1) sym-
bolic execution engine proceeds the expression with indexes
in a loop as a static expression. For instance, the engine may
report a double free on an array with different index in a
loop since the engine regard the array element with different
index as the same value; 2) While processing a conditional
statement with a complex logic, the symbolic execution en-
gine executes every path without considering the constraints
defined in the conditional statements.

Detection Effectiveness Assessment. To assess the detection
effectiveness of NLP-EYE, we applied four detection tools,
MallocChecker, Cppcheck, Infer and SVF, to the entire dataset for
comparison. MallocChecker and Infer claim to detect all three
kinds of vulnerabilities. Cppcheck and SVF are designed to
detect vulnerabilities of use-after-free and double-free. For
the null pointer de-reference vulnerability, MallocChecker and
Infer correctly reported 11 and 30 vulnerabilities, respectively.
However, they can only report those misuses caused by stan-
dard memory allocation functions, while NLP-EYE can de-
tect both standard and customized memory allocation func-
tions. Even worse, none of these tools can detect vulnerabili-
ties of use-after-free and double-free correctly.

We analyzed false positives caused by these tools. Similar
to NLP-EYE, the symbolic execution engine of MallocChecker
cannot identify the index of an array in a loop. Although
Cppcheck can detect use-after-free vulnerabilities, it became
inaccurate when lots of variables are declared to operate dy-
namic memories. Infer checks all returned pointers, which
cause many false positives. It even reported a use-after-free
vulnerability existed in an integer statement. SVF performed
the worst by reporting hundreds of double-free vulnerabilities,
which causes lots of errors.

4.5 Ex4: Runtime Performance
We evaluated the time cost of each phase (i.e., preprocessing,
semantics extraction, and vulnerability detection) of NLP-
EYE. Additionally, we tested the runtime of the other detec-
tion tools to assess the efficiency of NLP-EYE.

Before vulnerability detection, we collected all the posts
on StackOverflow forum with the size of 17GB to create the
context corpus, and it costs 56 hours to generate the model
file. This step processes only once because we can repeatedly
use the context corpus in further analysis.

Table 4 shows the total runtime cost of NLP-EYE and
the other tools while analyzing our dataset. NLP-EYE pre-
processes each library and program, and constructs the cor-
responding adaptive corpus within one seconds. It further
spends 36.601s on average to identify memory operation func-
tions in each library and program. NLP-EYE spends 70.917s
on ImageMagick, but no more than 6s on LibTIFF, because Im-
ageMagick has 14,636 functions and LibTIFF only includes
1,326 functions.

By comparing with the other tools, the runtime performance
of NLP-EYE and MallocChecker are similar, since they use
the same symbolic execution engine. SVF sacrifices the de-
tection accuracy to achieve a higher runtime performance.
Unfortunately, it is unhelpful for programmers to pinpoint
vulnerabilities. Cppcheck and Infer analyze the entire source
code to ensure a complete coverage, which costs much time.

4.6 Limitations
NLP-EYE successfully detects some memory corruption
vulnerabilities other tools cannot detect. The results of func-
tion identification and vulnerability detection indicate that
NLP-EYE understands the function semantics well with only
limited information. However, we still have the following lim-
itations that cause detection failures.

1. When a function implementation is complex, the sym-
bolic execution engine in NLP-EYE cannot correctly
analyze the data flow and control flow.

2. NLP-EYE cannot handle single letters involved in the
function prototypes which may causes false positive and
false negative.
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File1: GraphicsMagick/magick/memory.c

File2: GraphicsMagick/coders/pdb.c

1

2

3

4

5

6

7

8

static Image *ReadPDBImage(const ImageInfo 

*image_info,ExceptionInfo *exception){

    ...

    comment=MagickAllocateMemory(char *,length+1);

    p=comment;

    p[0]='\0';

    ...

}

1

2

3

4

5

6

MagickExport void * MagickMalloc(const size_t size){

      if (size == 0)

          return ((void *) NULL); 

      MEMORY_LIMIT_CHECK(GetCurrentFunction(),size);

      return (MallocFunc)(size);

}

Figure 5: A null pointer de-reference vulnerability in Graphic-
sMagick

4.7 Case Study

We discuss two representative vulnerabilities found in the
GraphicsMagick library and the CPython interpreter, respec-
tively.

GraphicsMagick is a library that was derived from the Im-
ageMagick image processing utility in November 2002. Graph-
icsMagick is securely designed and implemented after be-
ing tested by Memcheck and Helgrind3. Also, AddressSanitizer
(ASAN) [41], the most mature redzone-based memory error
detector, proves it to be secure against memory errors. Never-
theless, NLP-EYE detects six null pointer de-reference vul-
nerabilities from its latest version. An example is presented in
Figure 5. The function MagickAllocateMemory is declared
to allocate memories. If the dynamic memory is insufficient
and a null pointer is returned by this function (Line 4 of File2),
a segmentation fault will be triggered (Line 6 of File2).

To detect this vulnerability, a detector should rec-
ognize the customized memory allocation function
MagickAllocateMemory, which is a macro definition
of the MagickMalloc function. For MagickMalloc, its
implementation is defined in File1, and a customized
memory allocation function MallocFunc is declared in this
function. Besides analyzing the standard memory operation
functions, NLP-EYE first identifies the macro definition,
MagickAllocateMemory in Line4 of File2, and uses its
original function MagicMalloc in File1 to replace it. By
proceeding the preprocessing and semantics extraction
phases, NLP-EYE labels those functions as memory
operation functions, and finally locates function misuses. In
comparison, other detection tools (e.g., MallocChecker) cannot
distinguish those customized functions (i.e, MallocFunc,
MagicMalloc, and MagickAllocateMemory), and thus fail
to detect the flaw.

3Memcheck is a memory error detector for C and C++ programs. Hel-
grind is a tool for detecting synchronisation errors in C, C++ and Fortran
programs that use the POSIX pthreads threading primitives. They are all
based on Valgrind [36]

File1: CPython/Objects/obmalloc.c

File2: CPython/Modules/_randommodule.c

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

static PyObject *

random_seed(RandomObject *self, PyObject *args){

    ...

    res = _PyLong_AsByteArray((PyLongObject *)n,

                              (unsigned char *)key, 

   keyused * 4,

                              PY_LITTLE_ENDIAN,

                              0); /* unsigned */

    if (res == -1) {

        PyMem_Free(key);

        goto Done;

    }

    ...

    Done:

        PyMem_Free(key);

        return result;

}

1

2

3

void PyMem_Free(void *ptr){

    _PyMem.free(_PyMem.ctx, ptr);

}

Figure 6: A double-free vulnerability in CPython

Another sample code snippet with double-free vulnerability
is shown in Figure 6, which is detected from CPython inter-
preter. Apparently, function PyMem_Free in File1 is a memory
de-allocation function. If the variable res is -1, the variable
key will be freed twice (Line 10 and 15 of File2, respectively) .
To our surprise, this simple vulnerability was found neither by
manual audit nor automated source code analysis. According
to the feedback of CPython developers, the corresponding host
function has been tested for many times, but the vulnerability
still exists. Based on this feedback, we would say that identi-
fying customized memory operation functions is suitable to
memory corruption detection. NLP-EYE is very helpful in
this scenario.

5 Related Work

There are prior efforts of vulnerability detection, in this sec-
tion, we introduce these works based on their analysis ap-
proaches, i.e., source code-based analysis and binary code-
based analysis.

5.1 Source Code-based Analysis

Previous studies detect vulnerabilities by applying pro-
gram analysis on source code to extract pointer informa-
tion [42] [45] and data dependencies [34], [24], [29], [28].

To analyze C programming source code, CRED [45] detects
use-after-free vulnerabilities in C programs. It extracts points-
to information by applying a path-sensitive demand-driven
approach. To decrease false alarms, it uses spatio-temporal
context reduction technique to construct use-after-free pairs
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precisely. However, the pairing part is time consuming that
every path in the source code is required to be analyzed and
memorized. Instead of analyzing the entire source code, Pin-
point [42] applies sparse value-flow analysis to identify vul-
nerabilities in C programs, such as use-after-free, double-free.
To reduces the cost of data dependency analysis, Pinpoint ana-
lyzes local data dependence first and then performs symbolic
execution to memorize the non-local data dependency and
path conditions.

Similar to the above, some other tools detect vulnerabilities
by compare data-flows with some pre-defined rules/violations.
CBMC [28] is a C bounded model checker, which examines
safety of the assertions under a given bound. It translates
assertions and loops into a formula. If this formula satisfies
any pre-defined violations, then a violated assertion will be
identified. Coccinelle [29] finds specific bug by comparing the
code with a given pattern written in Semantic Patch Language
(SmPL).

Source code-based analysis has also been applied to Linux
kernel. Due to the large amount of kernel code in Linux,
DR. CHECKER [34] and K-Miner [24] are designed to be more
effective and efficiency. DR. CHECKER employs a soundy ap-
proach based on program analysis. It is capable of conducting
large-scale analysis and detecting numerous classes of bugs
in Linux kernel drivers. K-Miner finds vulnerabilities by set-
ting up a virtual kernel environment and processing syscalls
separately.

Those proposed tools perform well to detect vulnerabilities
implemented under standard programming styles, such as call-
ing standard library APIs, designing standard implementation
steps. They cannot proceed those customized functions just
like how NLP-EYE does.

Instead of applying program analysis, both VulPecker [31]
and VUDDY [27] detects vulnerabilities based on the code sim-
ilarity. VulPecker builds a vulnerability database by using diff
hunk features collected from each vulnerable code and its
corresponding patch code. VUDDY proceeds each vulnerable
function as an unit, and then abstracts and normalizes vulnera-
ble functions to ensure that they are able to detect clones with
modifications. However, similarity-based techniques require
a massive database that can be learnt from.

5.2 Binary Code-based Analysis

Instead of analyzing source code, binary code can also
be adopted to identify memory corruption vulnerabili-
ties on stacks and allocated memories [22], [36], [41],
[26], [44], [25], [23].

Memory shadowing helps to track the memory status
at runtime. It also causes large memory consumption.
Dr.Memory [22] conducts memory checking on Windows and
Linux. It uses memory shadowing to track the memory status
and identifies stack usage within heap memory. Dr.Memory is
flexible and lightweight by using an encoding for callstacks to
reduce memory consumption. AddressSanitizer [41] minimizes
the memory consumption by creating a compact shadow mem-

ory, which achieves a a 128-to-1 mapping. By implementing
a specialized memory allocator and code instrumentation in
the compiler, AddressSanitizer analyzes the vulnerabilities on
stack, head, global variables. HOTracer [26] discovers heap
overflow vulnerabilities by examining whether a heap access
operation can be controlled by an attacker. HOTracer finds
vulnerabilities by giving an accurate definition to buffer over-
flow and it uses a heuristic method to find memory allocation
functions. HOTracer is able to identify memory allocation func-
tions with a higher accuracy, and several unknown overflow
vulnerabilities are detected.

Unfortunately, detecting memory corruptions through bi-
nary code-based analysis requires proper inputs, that can pre-
cisely trigger the corresponding memory operation. It might
cause some false negatives because of the incomplete code
coverage.

6 Conclusion

We propose an NLP-based automated approach to detect mem-
ory corruption vulnerabilities. A detection tool, NLP-EYE,
is developed to identify vulnerabilities of null pointer de-
reference, use-after-free, double free. The novelty of our ap-
proach is that we retrieve the function semantics accurately
based on a little function information, i.e., function prototypes
and comments, instead of using the entire function implemen-
tations. With the help of NLP-based and type-based analyses,
NLP-EYE identifies memory operation functions accurately.
Our approach is also adaptable since NLP-EYE generates
an adaptive corpus for different dataset by extracting their
comments from source code and various programming styles.

In this work, we only focused on memory corruption vul-
nerabilities. We plan to extend NLP-EYE in future with
additional reference functions to identify the other vulnera-
bilities. We also open source NLP-EYE to help analysts and
developers to improve software security.
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