
Smart Solution, Poor Protection:
An Empirical Study of Security and Privacy Issues in Developing

and Deploying Smart Home Devices
Hui Liu

Shanghai Jiao Tong University
Minhang Qu, Shanghai Shi, China

Changyu Li
Shanghai Jiao Tong University

Minhang Qu, Shanghai Shi, China

Xuancheng Jin
Xidian University

Xi’an, Shaanxi, China

Juanru Li
Shanghai Jiao Tong University

Minhang Qu, Shanghai Shi, China

Yuanyuan Zhang∗
Shanghai Jiao Tong University

Minhang Qu, Shanghai Shi, China

Dawu Gu
Shanghai Jiao Tong University

Minhang Qu, Shanghai Shi, China

ABSTRACT
The concept of Smart Home drives the upgrade of home devices
from traditional mode to an Internet-connected version. Instead
of developing the smart devices from scratch, manufacturers often
utilize existing smart home solutions released by large IT compa-
nies (e.g., Amazon, Google) to help build the smart home network.
A smart home solution provides components such as software de-
velopment kit (SDK) and relevant management system to boost the
development and deployment of smart home devices. Nonetheless,
the participating of third-party SDKs and management systems
complicates the workflow of such devices. If not meticulously as-
sessed, the complex workflow often leads to the violation of privacy
and security to both the consumer and the manufacturer. In this
paper, we illustrate how the security and privacy of smart home
devices are affected by JoyLink, a widely used smart home solution.
We demonstrate a concrete analysis combined with network traffic
interception, source code audit, and binary code reverse engineer-
ing to evince that the design of smart home solution is error-prone.
We argue that if the security and privacy issues are not considered,
devices using the solution are inevitably vulnerable and thus the
privacy and security of smart home are seriously threatened.
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1 INTRODUCTION
The rapid growth of Internet of Things (IoT) promotes the popular-
ity of smart home, a home system in which all the home appliances,
sensors and services can be connected through the communication
network, and can be remotely monitored and controlled. Despite
the prosperity, the smart home space is heavily fragmented. De-
vices are made by different manufacturers and industry standard
is lacked, thus they are often incompatible with each other due
to the communication diversity. To accelerate the development of
smart home devices and integrate diverse devices into a unified net-
work, smart home solutions are proposed by large IT companies
such as Apple, Amazon, and Google. A smart home solution often
provides two components: one software development kit (SDK)
with common functions and protocols implemented to support mul-
tiple IoT architectures (e.g., ARM, AVR, PIC), and a management
system (a gateway or a web-based platform) to connect differ-
ent devices in a smart home system. Manufacturers could simply
make use of the SDK and configure the device to communicate with
the management system, then consumers could access and manage
the device through the management system.

Although smart home solution facilitates the developing and
deploying of smart devices, it also introduces potential security and
privacy risks from two aspects: First, the use of SDK enlarges the
code base of smart devices. Since the SDK is not designed specifi-
cally for one but for a variety of devices. It often contains multiple
functions that are not always necessary and even vulnerable. More
seriously, developers do not always understand the usage of the
SDK correctly. Recent years have witnessed the misuse of third-
party SDKs of many platforms [10, 11] and the IoT platform is no
exception. Second, smart home solution providers often introduce
a cloud platform for data collecting and transmitting. Although this
helps achieve a centralized management of devices, it adds an extra
remote server between the device and its user. The uploaded data
is sometimes not well-protected and thus raises privacy concerns.

Even though specific concerns about the smart home have been
expressed, the problem is often not blamed on the smart devices
themselves. It is usually the ill-designed smart home solutions that
lead to the violation of security and privacy. To alleviate those
concerns, smart home solution should be assessed thoroughly. The
assessment is, however, hindered by several issues. First, manufac-
turers sometimes modify the SDK to conform to their devices and
thus the workflow for each device may be slightly different. Second,
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some logics of the workflow are implemented on the web server
and is unknown to analysts. Third, solutions are not always well-
documented and many details of the workflow are only regulated
by the source code of the SDKs. In a word, the assessment of smart
home solutions requires an in-depth security analysis.

To reveal how smart home solution could affect a wide range of
devices from different manufacturers. This paper conducts an em-
pirical study on a representative smart home solution–JoyLink [1]
and its relevant smart devices. JoyLink is a widely used smart home
solution in China and supports more than 6100 smart devices includ-
ing air conditioner, washing machine, camera, etc. Although the
high-level process of the deployment and management of JoyLink
smart home solution are described by its published documents,
many details related to security and privacy are opaque and uncer-
tain. To thoroughly comprehend its workflow and find potential
flaws, we propose an analysis combined with network traffic inter-
ception, source code audit, and binary code reverse engineering.
Particularly, we focus on the deployment procedure, which is the
most vulnerable link of the entire lifetime of the smart device. Our
analysis reveals that the workflow adopted by JoyLink is inher-
ently vulnerable due to the following design issues: 1) incorrect
crypto key management; 2) unnecessarily uploading of sensitive
data (lacking end-to-end encryption); 3) insecure authentication
mechanism. As a result, smart devices with JoyLink protocol can
be hijacked or impersonated, and the sensitive private data such as
WiFi password is leaked.

Responsible Disclosure. We have reported discovered flaws
to relevant security response centers (SRC) prior to submitting our
work. According to the response, several vulnerabilities including
WiFi credential uploading have been fixed before the submitting
of our findings. The purpose of this paper is not to demonstrate
some concrete attacks against certain smart home solution, but to
demonstrate how improper design of the smart home solution and
its relevant network infrastructure affect the security and privacy
of smart home devices. We expect our work could help security
analysts and smart home solution designers conduct more effective
assessment of smart home solutions and thereby providing better
the device protection.

2 ANALYSIS OF JOYLINK SOLUTION
The JoyLink solution is a smart home solution proposed by JD.com
(a.k.a 360buy), the largest E-commerce company in China (rank
by revenue). The solution provides an SDK that supports a wide
range of IoT devices, an app to manage all JoyLink-compatible de-
vices, and a smart cloud platform as the management system to
receive and store device data. Unlike other smart home solutions,
JoyLink only supports devices shipped with a WiFi or BLE module.
Therefore, it does not require a hub or a gateway as the manage-
ment system. A typical architecture and relevant workflow of a
JoyLink smart home system are depicted in Figure 1. There are
four entities involved: the smart home device (192.168.2.5) to be
included; the JoyLink app (192.168.2.2) running on a smart phone
(Android or iOS) and playing the role of managing and controlling;
the WiFi hotspot (192.168.2.1) that the phone has connected to
and that the device is to be configured to connect to; and the cloud
(113.xx.xx.xx) that both the phone and the device communicate

Figure 1: The architecture of the JoyLink solution and the
basic workflow of a specific device.

Figure 2: Message Header.

with to complete registration, device binding, remote controlling,
etc. To join the JoyLink smart home system, all smart devices must
first integrate with JoyLink SDK and conform to the same protocol.
The protocol mainly consists of three steps: 1) bringing the device
online, 2) binding the device with the user account, and 3) setting
the device to be controlled locally and remotely. To discover how
these steps are implemented and whether the security and privacy
are well protected, we build an experimental environment with
several JoyLink-compatible devices, a rooted Android smart phone,
and a network traffic analyzer based on a Raspberry-Pi to monitor
the workflow. The analysis results are detailed as follows:

We first manually review the source code of JoyLink SDK and
relevant documents to understand the communication process.
Throughout the entire communication process, the communication
between the app and the cloud always adopts HTTPS, with the
client correctly verifying certificates. We name the communica-
tion between the app and the device as local communication, and
the device-cloud communication as remote communication. Both
of them are home-made protocols. The protocol message header
format, shown in Figure 2, is followed by the optdata field and pay-
load field. The magic field is a protocol indicator, which contains
two possible values respectively representing the local and remote
communication. The type field indicates the packet type, whose
value can be the ones listed in Figure 3. The enctype field indicates
the encryption type, whose possible values including ET_NOTHING
(no encryption), ET_ACCESSKEYAES (use accesskey as the AES key),
ET_ECDH, ET_SESSIONKEYAES, etc. The crc field is a two-byte check-
sum, presumably used to detect data corruption. The opt data field
is present only when the packet type is PT_SCAN, and the content
is the EC public key of the sender. Both the header and the optdata
field are in plain text. The payload can be plaintext or encrypted
depending on the enctype field.
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Figure 3: Mainly used packet type.

Payload is encrypted with AES/CBC by default, and four keys are
involved: 1) the key negotiated between the app and the device dur-
ing PT_SCAN, which we name as tmpkey; 2) the localkey generated
by the app and used to encrypt rest of the local communication;
3) the accesskey which is generated by the cloud, passed to the
device by the app and used by the device to authenticate itself to
the cloud; 4) the sessionkey which is generated by the cloud and
used in remote communication.

After the audit of source code of Joylink SDK, we further verify
whether the smart devices adopted the SDK follow the suggested
workflow. In our analysis we obtain the firmware of a smart plugin
through capturing the traffic of its upgrading procedure.We find the
used microcontroller is a QCA4010 [3] with Xtensa [2] architecture.
Thus we also download the source code of Joylink SDK and compile
the corresponding library to conduct a code similarity comparison
that matches the function in the firmware. Now we detailed those
important steps in the workflow especially the device deployment
procedure.

2.1 Preparation
The app obtains a product_uuid by scanning the QR code on the
device or choosing the right product name listed in the app and
sends it to the cloud. Afterwards, the app broadcasts the PT_SCAN
message indicating the product_uuid and the EC public key of the
app. Meantime, the app asks user to input WiFi credential and starts
a WiFi Provisioning process.

2.2 Device WiFi Provisioning
Several schemes are commonly used when completing WiFi con-
figuration of a headless IoT device using a mobile application (e.g.,
Access Point Mode, WiFi direct, TI’s SmartConfig). JoyLink adopts
the method that the app encodes the SSID and password into a
sequence of IP addresses and sends each IP a null character. At
the same time, the app continues broadcasting the PT_SCAN mes-
sage. This process repeats until the device successfully observes
the traffic pattern, extracts the WiFi credential, gains access to the
network, and finally sends a PT_SCAN response to the app. The
response includes the device MAC address and devkey, which is
the EC public key of the device.

Figure 4: Summary of device setup

2.3 Device Initialization
Once the app gets the MAC address, it sends a request to the cloud
containing the MAC and other information like product_uuid and
user account. The cloud confirms the binding relationship and re-
sponds with a message containing feedid and accesskey. The app
generates the localkey out of accesskey and sends it together with
feedid and accesskey to the device in a PT_WRITEACCESSKEY mes-
sage, which is encrypted with the key negotiated out of ECDH
(tmpkey) during PT_SCAN. The device saves the {feedid, accesskey,
localkey} and sends the PT_AUTH request to the cloud. The PT_AUTH
request includes feedid and is sent to authenticate itself and obtain
the key used in the normal remote communication. Once receive
the request, the cloud generates a sessionkey, encrypts it with the
accesskey, and sends the result in the PT_AUTH response message.

2.4 Remote Control
The device decrypts the PT_AUTH response, gets the sessionkey,
and launches a long connection to the cloud. From this point, the
message payload is encrypted with the sessionkey. Messages sent be-
tween the device and the cloud can be categorized by function into
heartbeat, remote control and status report message. The device
sends a PT_HEARTBEAT packet every 15 seconds. And it reacts imme-
diately once the cloud sends a control message PT_SERVERCONTROL
and responds with the status report packet.

In all, the whole device setup process is summarized in Figure 4.
What we describe above illustrates the normal procedure as an or-
dinary user adding a new the device and controlling it from the app.
In the following two sections, by introducing a locally resided at-
tacker, we describe how the improper design of the JoyLink solution
endangers security and privacy.
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3 SECURITY ISSUES
3.1 WiFi Provisioning
As we presented in Section 2.2, the app encodes the WiFi credential
into a sequence of IP addresses. However, this encoding is nothing
more but simply putting one character a time to the last byte of
the IP address, which makes the credential available to anyone in
the vicinity. Besides, a local attacker can fake the traffic indicating
credential of the WiFi she controls. The transmitted WiFi credential
has no binding relationship with the user account. The device does
not report the WiFi it connects. Therefore, the whole configura-
tion and control process seem normal to everyone except that the
innocent user will find the device abnormally go offline once the
attacker shuts down the fake WiFi.

3.2 Communication Security
The whole crypto key management is vulnerable. The four keys
mentioned above have an dependence relationship as: sessionkey→
accesskey → localkey → tmpkey. Except for tmpkey, the rest keys
are all generated by a single party. The security of the key on the
left when delivered to the counter-party is dependent on the right
key. Although tmpkey is generated through negotiation, the ECDH
key negotiation process has no MITM protection. A local adversary
can launch a MITM attack, and all these keys are exposed to the
attacker.

Another serious issue comes in as the enctype is not constrained
by any party of the communication. As such, some of the encrypted
communication as we described above, can be downgraded to plain-
text communication by an attacker who constructs an ET_NOTHING
packet. Attacks can be carried out using several approaches and
result in different severity of consequences. We demonstrate these
attacks as follows:

Traffic Decryption. The attacker resides in the middle when
the normal user tries to bind the device. Once detected the PT_SCAN
message, she acts as the man in the middle, replacing EC public
keys in the corresponding messages. After that, she can decrypt the
payload of the PT_WRITEACCESSKEY message, obtain the accesskey
and the localkey, send these information in PT_WRITEACCESSKEY
message using the ET_ECDH encryption, which is feasible since the
device is sharing key with the attacker. She can also simply send
these information with ET_NOTHING encryption. Since the attacker
knows the accesskey, she can decrypt the PT_AUTH response and
obtain the sessionkey. Therefore, the normal user perceives nothing,
and the attacker can decrypt all the traffic afterwards.

Device Hijacking. The device will react to the PT_SCAN mes-
sage whenever it receives one, and respond immediately with the
PT_SCAN response indicating the device MAC and other informa-
tion. An attacker who has connected to the same WiFi as the device
does, can send a PT_SCAN message and thus obtaining the device
MAC. Then the attacker logins into his own the cloud account and
sends an activate request containing the obtained MAC to the cloud
with the feedid field set to null. The cloud will return feedid and
accesskey no matter whether or not the MAC has been binded to
an existed feedid. Now the attacker can generate a localkey and
write {accesskey, localkey, server IP} to the device with the PT_-
WRITEACCESSKEY message. And the attacker can leave the device
communicating with the cloud and establishing a long connection.

In this way, the attacker successfully hijacks the device to her own
account, and can control the device remotely.

Out-of-band Device Control. The attacker can control the de-
vice without the involvement of the cloud and the app. The attacker
can achieve this either by simply sending a PT_SCRIPTCONTROLmes-
sage of ET_NOTHING encryption type, instructing the state change
of the device locally, or generating a new PT_WRITEACCESSKEYmes-
sage with the server IP field filled with her own IP, which makes
the device establish the long connection with the fake server and be
controlled by the fake server remotely via the PT_SERVERCONTROL
message.

Device Impersonation. The attacker can login her cloud ac-
count, make up a MAC address, and send the cloud an activate
request containing the MAC. With the accesskey acquired, she will
get all the data needed to forge the existence of the device. There-
fore, the attacker can have her account binding as many devices as
she want.

3.3 Firmware Modification
Since the SDK allows a firmware update procedure, many smart
home devices we analyzed support both local and remote firmware
update. After the device binding, the URL of a firmware will be
sent from the cloud to the app if the device firmware has a new
version. And the app will pass the URL to the device locally. The
URL can also be delivered directly from the cloud to the device via
the remote communication. After receiving the URL, the device
makes an TCP connection to the URL to fetch the binary file of the
firmware. However, the verification of the downloaded file is lacked
or incorrect, which allows attackers to modify the firmware and
inject malicious code. Due to the incorrect sample given by the SDK,
we found many devices conduct no verification of the downloaded
firmware other than checking the CRC32 value gotten together
with the URL. This is a severe security vulnerability, since both of
the local and remote communication can be taken control of by
the attacker as we describe above. What’s more, we encounter the
situation that the app kept prompting fail message on the app when
we try to update the firmware as the normal user does. Through
traffic sniffing, we observe that the URL the device receives can not
be successfully used to obtain the firmware. The reason is that the
URL the device requests is added with an additional slash compared
with what the device receives, which the server does not respond.
This typo makes many devices outmoded and may suffer from
attacks with published vulnerabilities.

4 PRIVACY ISSUES
Throughout the entire process of communication, all the control
commands and device uploaded data are visible to the cloud. We
argue that a better design should be based on end-to-end encryption,
considering the large amount of user-related data involved. The
cloud should only forward all the encrypted data between the device
and the app without knowing the meaning of the transmitted data.

Another serious privacy violation we find in the protocol work-
flow is that during the WiFi provisioning process the app also sends
WiFi credential to the cloud. This happens before the app talking
to those list of IPs. Actually, this step is done only to get rules of
the WiFi credential encoding, which is totally unnecessary and
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serious infringement of user privacy. Particularly, we find that the
app get an update after being informed of the inappropriateness
of the WiFi upload behavior. However, The update conducts an
encryption before sending the credential out instead of removing
the WiFi credential upload process as we expected. After analy-
sis, we find that the adopted encryption scheme is another typical
cryptography misuse. The message in cipher text consists of two
parts. The data field is the result of AES/CBC encryption of the
credential, and the key field is the encrypted AES key. The AES
key is encrypted with a hard-coded public key in the app using
RSA/ECB/PKCS1Padding encryption. Everything seems fine until
we find out that the value of the timestamp is used as the AES key.
We can deduce the key by enumerating all the possible timestamps
since the space is small enough. And the one that can decrypt the
data field into a sequence of readable characters is the right key
with extremely high probability. Nonetheless, even though this en-
cryption scheme works correctly, we insist that the WiFi credential
should never be upload to the cloud.

5 DISCUSSION
The attacks described in the previous section is made possible by a
combination of design and implementation issues. 1) Critical keys
used to secure the communication are determined by single party,
which makes them easier to be forged. And the dependency rela-
tionship between these keys make the tmpkey the most important
position. Although the tmpkey is negotiated through ECDH, no
MITM protection still opens the door to the attacker. 2) The cloud
does not check existing binding relationships before responding to
an activate request. 3) The device always responds to any request
that satisfies the message format. The protocol state machine is
poorly maintained. 4) The communication protocol supports differ-
ent type of encryption and enforces no constraint like when to use
the encryption mode.

The SDK is used in every device that support JoyLink, making
the security of the SDK itself crucial to the entire ecology. We give
the following suggestions for mitigation:

• Add MITM protection during ECDH key negotiation.
Presetting each device a key pair and maintaining the map-
ping relations on the cloud can prevent the MITM attacks.
However, probably because the cost of assigning each device
a unique key pair is too high, distributing the same key to
the same type of products is more possible to happen when
deploying [8]. On the other way around, presetting the pub-
lic key of the app in devices can also achieve the goal, on
the condition that the private key is properly protected and
used.
• Bind the encryption type with packet type. The ET_-
NOTHING type should only be used in the PT_SCAN message.
• Make keys dependent on both parties. All the keys used
should be generated by negotiating through a secure chan-
nel or with confidence of the identity of the communicator.
Avoid the direct dependency relationship between keys, and
introduce some randomness if the relationship must exist.
• Maintain the protocol state machine correctly. The de-
vice should only accept PT_SCAN and PT_WRITEACCESSKEY
message when it is in the configuration mode, which is

launchedmerely at the first use indicated by the non-existence
of some parameters such as feedid, localkey and accesskey,
or by manually resetting the device.

As for how to audit a smart home solution and locate the vulner-
able links. The analysis approach we used in JoyLink can be applied
to other smart home solutions, since their application senarios and
the information available to analysts are highly similar. A critical
aspect needs to pay attention to is the device bootstrapping proce-
dure. Violation of security and privacy may arise as a lot of options
existing. Each of the options meets different security requirements
and satisfies different use-cases. [7] provides a structured classifica-
tion of the available mechanisms and their security considerations.
The implementation of these IoT device bootstrapping methods can
be complex and error-prone, and the analysis is effort-consuming.

6 RELATEDWORK
IoT security and privacy is an emerging area and in recent years nu-
merous works on the security of IoT devices and protocols were pub-
lished. Current smart home security analyses are centered around
two themes: devices and protocols. On the device front, Ronen et
al. [8] presents a comprehensive attack against Philips Hue smart
lamps combined with side-channel analysis and firmware reverse
engineering. Fereidooni et al. [4] give an in-depth security anal-
ysis of the operation of fitness trackers commercialized by Fitbit.
However, these researches have largely focused on certain devices
and often ignore the security and privacy vulnerabilities caused by
smart home solutions. On the protocol front, researchers demon-
strated flaws in both ZigBee [8] and BLE [6] protocol implementa-
tions for smart home devices. These works focus on the security
aspect and discuss less about privacy issues.

Similar to our work, a security analysis of several smart home
hubs is performed by Veracode [9]. The security analysis focuses
on infrastructure protection such as SSL/TLS deployment, replay
attack protection, and password strength. Our study is more fine-
grained since we conduct SDK source code audit and firmware
reverse engineering to reveal flaws in proprietary JoyLink protocol.
Fernandes et al. [5] presents an in-depth empirical security analysis
of Samsung SmartThings smart home platform. The focus of this
work, however, is SmartThings apps. In comparison, our work con-
cerns more about the SDKs and management systems introduced
by the smart home solutions, and reveals intrinsic design flaws of
popular JoyLink smart home solution.

7 CONCLUSION
In this paper, we discuss the security and privacy threats intro-
duced by using smart home solutions. A comprehensive analysis
combined with source code audit, binary code reverse engineer-
ing, and network traffic interception is demonstrated to reveal the
detailed workflow of devices using Joylink smart home solution.
The analysis reveals that due to the design flaws in the SDK and
relevant network communication protocols, devices are inevitably
vulnerable, and both the security and the privacy are violated. We
suggest that developers and analysts scrutinize existing smart home
solutions to avoid such issues.
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