
An Empirical Study of Insecure Communication
in Android Apps

Yueheng Zhang, Junliang Shu, Yuanyuan Zhang, Juanru Li, Qing Wang, and
Dawu Gu

Computer Science and Engineering Department,
Shanghai Jiao Tong University, Shanghai, China

Abstract. Android apps rely on secure communication protocol to prove
the confidentiality of sensitive data transmission. However, inexperienced
developers tend to adopt insecure communication and introduce security
risks. To study how prevalent the insecure communication protocols are
used by real world Android apps, we conducted an in-depth analysis to
examine popular apps from Google Play and MyApp Android app mar-
ket. We collect 435 apps from major categories, such as gaming, shop-
ping and social networks, and we monitored the communication of those
apps and classified their used protocols into three categories: secure, in-
secure, and proprietary. Then we investigated those proprietary ones to
find potential insecure implementation. We designed and implemented
RawDroid, a protocol audit system combining network monitoring and
program analysis technique to systematically inspect the security of pro-
prietary protocol. We found that a large number of developers frequently
use non-standard proprietary protocols. Among all analyzed apps, our
security audit revealed that 36.7% apps adopted a proprietary protocol,
and all those proprietary protocols fail to achieve confidentiality: some
of them send sensitive data in the form of plain-text to servers; some
misuse cryptographic algorithms and lead to the exposure of transferred
privacy even if the content is encrypted. We believe this kind of protocols
pose great security threats to Android ecosystem.

Keywords: Android apps; Proprietary protocol; Security; Program anal-
ysis

1 Introduction

With the coming of the information era, Android smartphone becomes more
ubiquitous and pervasive. Many network services such as gaming, online shop-
ping and social networks deploy their client apps for Android platform. These
apps usually deliver user’s privacy to servers. Although this client/server com-
munication pattern provides convenience and flexibility to developers, it also in-
troduces security-related issues. The confidentiality of transmitted privacy data
heavily relies on the security of protocols. In general, developers must build ro-
bust protocols, which guarantee apps to communicate with their servers securely
against attackers. To protect from being attacked through untrusted network,

2 Yueheng Zhang et al.

security best practices suggest deploying HTTPS protocol. Nonetheless, many
apps still adopt security-by-obscurity policy to deploy their own proprietary
protocols. Therefore, security risks are introduced.

To our knowledge, although the security analysis of common application layer
protocols has been widely studied in previous works. There is no systematic
research on analyzing the prevalence of Android apps’ insecure communication,
especially on proprietary protocols. Most of previous works rely on the fact
that the format of analyzed protocol is well defined in network traffic. Unlike
common protocols, however, the formats of proprietary protocols vary from one
to another, which makes it difficult to be analyzed. In addition, many proprietary
protocols employ encryption to hinder the analysis. Hence new analysis should
be proposed to address these issues.

In this paper, we conducted a systematically study to investigate the situa-
tion of insecure network protocol usage in Android apps. We fulfilled the study
in two steps. The first step of our work involves an automated testing to find
the use of potential insecure communication (non-HTTPS of those apps. Then,
we further analyze used proprietary protocols to audit the security. We pro-
pose RawDroid, a lightweight and semi-automatic protocol audity system to
detect security flaws of proprietary protocols. RawDroid combines network traf-
fic analysis and dynamic program analysis to locate potential insecure protocols.
It hooks all key functions in system libraries related to network to record the
invoking and the parameters of them. RawDroid also captures the network traf-
fic and system status for later analysis during the execution. With the help of
these run-time information, RawDroid determines whether an Android app uses
proprietary protocol, and enhances manual analysis through pinpointing related
functions in code to efficiently evaluate the security of the used protocols.

To validate RawDroid, we selected 435 apps involving entertaining, online
shopping, and social network communicating from Google Play and MyApp An-
droid app market. The analysis of RawDroid found that insecure communication
(non HTTPS) are used by 363 apps (83.4%). Among them, 158 apps (36.7%)
use proprietary protocols rather than common application layer protocols (e.g.,
HTTP, HTTPS) to transmit data. And we manually audited 60 apps using
proprietary protocols with the help of RawDroid, finding that all proprietary
protocols are insecure. We found 54 apps send sensitive data in plain-text, while
six apps misuse cryptography to build insecure encryption schemes. The cases of
cryptographic misuses include hard-coded key in their custom cryptographic al-
gorithms, key transmitting in plaint-text with encrypted data. The experimental
results show that the potential threats are severe and can lead to serious attacks,
leaking user’s privacy. The results also raise the alarm to developers about the
importance of applying security protocols instead of designing proprietary ones.

In this paper, we make the following contributions:

– We conduct an in-depth analysis on insecure network communications of
Android apps, which provide a panoramic view of the usage of insecure
communication in Android apps.

An Empirical Study of Insecure Communication in Android Apps 3

– We present RawDroid as a protocol audit system to analyze the security of
data transmission through proprietary protocols in Android and use it to
perform a large scale evaluation of proprietary protocols.

– Our study demonstrates that transferring data through proprietary protocols
is common in modern Android apps. However, most of them fail to protect
the data due to security flaws.

The remainder of the paper is organized as follows. We present the prelim-
inaries in Section 2. In Section 3, we describe our study on classifying network
protocols in Android apps, and how to apply RawDroid to audit the security of
those protocols. We evaluate RawDroid in Section 4 and discuss details of crypto
misuses in proprietary protocols. Related work is introduced in Section 5 and
we conclude the paper in Section 6.

2 Background and Motivation

2.1 Android Security Mechanism

The security of the Android platform is based on the robust security of Linux
kernel, and its sandbox and permission protection mechanism, which isolates
and run Android apps on their own process and protect users sensitive data
against malwares. However, a larger number of Android apps are designed to be
open to transmit users data to servers through the network. This means that
the protection of the sandbox and permission cannot cover the network aspect,
and potential vulnerabilities to sensitive data still remain.

2.2 Network Communication in Android

Network protocols are a common method for exchanging data between client and
server. Android apps rely on the security of network protocols to guarantee the
confidentiality of private data. However, in order to finalize functions, inexperi-
enced developers adopt insecure communication in their productions. In order
to in-depth analysis, we classify network protocols into two categories according
to their security characteristic.

Secure Network Protocol HTTPS [4] is the use of SSL or TLS as a
sublayer under regular HTTP application layering. It encrypts and decrypts
user data requests as well as the data that are returned by the Web server. It
is more secure than other common application layer protocols. Along with the
increase of security requirements, the applications on iOS platform are all forced
to use HTTPS, since HTTPS is more secure to transport data after encrypting.
Also, HTTPS Everywhere [3], a famous tool for extension of browsers, suggests
that all communications are encrypted for HTTPS with various web servers,
making network communications more secure. Therefore, by using HTTPS in
Android apps, it will prevent sensitive data from leaking in untrusted network.

Insecure Communication Some companies are unwilling to share their
information with others, while they build an individual proprietary protocols

4 Yueheng Zhang et al.

to communicate among their own products. It is more convenient and easy-
deployment on Android platform. Therefore, there are numerous benign Android
apps using proprietary protocols as a principal way of network communications.
However, this method is also a preference for malware developers since most AVs
or malware-detection tools monitor port 80 or 443 which are used by conventional
protocols (e.g., HTTP, HTTPS).

Android framework provides APIs for allowing developers to apply propri-
etary protocol. In TCP, server, in the Java code, declares a ServerSocket object
and binds its IP address and port number. Then the server calls accept method
to wait clients connections. As a client, app who wishes to communicate with
the server needs to create a Socket object to record the IP address and port of
the server, and then sends streams by writing data into an Outputstream object.
While, in UDP, an app, as a client, uses class InetAddress to build a socket with
the server. While, in the native code, clients just need to put data into a char
array and send it by function send or sendto. In order to guarantee the security
of sensitive data, developers need to encrypt data by cryptographic algorithms
to prevent attackers from stealing critical data or preforming a MITM attack.

2.3 Threat Module

The security of both HTTP and proprietary protocol requires the guarantee that
developers encrypt sensitive data by using cryptographic algorithms. Even with
experienced developers, there are also existing misuse of cryptography in Apps.
Therefore, they are weak for remote network-based attackers.

Our threat model assumes attackers can capture the network traffic and
reverse analyze Apps. Users sensitive data have faced three attack vectors. In
general, we classify a network connection as vulnerable if: (1) HTTP is a protocol
which takes plain text to communicate with servers. It will be easy to perform
MIMT attacks. (2) Apps submit data in plain-text by proprietary protocols. (3)
Developers encrypt sensitive data, but exit the misuse of cryptography (e.g.,
hard-coded key, plain-text key exchange).

3 Analysis of Insecure Communication

How network communication guarantee the security of apps in Android is a
common question to security researchers. In order to investigate this question,
we study 435 apps from Google Play and MyApp Android market.

Given an app, our preliminary step takes an off-the-shelf installed app as
input, and launches it relying on Google Monkey [5], a popular tool for au-
tomatically executing and simulating user interaction to trigger various events
of apps. After that, we collect informations about the network usage of the
app. The command netstat is used to monitor all kinds of network information,
such as network usage, interface statistics, route table and so on. We use this
command to record each server’s IP address and port numbers during Android
runtime. However, it is limited to only preform netstat. In order to record the

An Empirical Study of Insecure Communication in Android Apps 5

app’s individual network usage completely, we also monitor these four system
files: /proc/net/tcp(6) and /proc/net/udp(6). All of the four files are readable
with any permissions. These four files is used to record all connections status
for TCP or UDP. We use app’s uid to filter each network trace. For the future
analysis, we also capture the network traffic for each app.

A snippet of command netstat results and a example of content read by these
four system files are as follows:

Proto Local Address Foreign Address PID/Program name

tcp 192.168.3.2:53253 121.195.187.60:80 8799/sogou.mobile.e

tcp 192.168.3.2:34122 111.202.114.74:443 2408/com.yuntongxun

tcp 192.168.3.2:56185 203.208.43.98:80 1040/android.proces

tcp 192.168.3.2:52999 121.195.187.54:80 8799/sogou.mobile.e

tcp 192.168.3.2:45646 121.195.187.54:80 7082/com.sohu.input

tcp 192.168.3.2:40621 121.195.187.54:80 7082/com.sohu.input

local_address rem_address st uid timeout inode

0100007F:13AD 00000000:0000 0A 0 0 20957

0203A8C0:D96B EE95387B:1F95 01 10666 0 73783

According to the first snippet, we recode proto, foreign address and program
name to further analysis. Meanwhile, from the field rem address and uid, we can
combine with the results of netstat to select candidate data packets.

Table 1. The Types of Protocols Used By Sample Apps

Type The Number of Apps

HTTP 203

HTTPS 69

Proprietary Protocol 158

Total 435

In this work, we built a dataset of apps. We select 435 apps which were
randomly downloaded from Google Play and MyApp Android Market, and each
of them had been downloaded at least millions of times. There were three apps
that had no ability to communicate with network, and two apps crashed by some
reasons. We finally successfully analyzed 430 apps. The results of our analysis
are listed in Table 1.

The results demonstrate that commonly used protocols in network commu-
nication fall into three categories — HTTP, HTTPS, Proprietary Protocol. The
former two have relatively sophisticated mechanisms for maintaining security,
and developers usually use them to transport information about UI or web
pages. The latter is a unique feature for many online-privacy-related apps to
send sensitive data to servers.

6 Yueheng Zhang et al.

It is easy to know that apps will use both HTTP and HTTPS. We consider
that this situation is insecure. In this paper, we define that only HTTPS is se-
cure protocol and HTTP and proprietary protocol are insecure. The definition of
secure and insecure protocols is not arbitrary, and it is necessary and realistic for
our study. First of all, all the sending data are plaintext which are encapsulated
into HTTP. It is easy to be MITM attacked. For example, in an untrust WiFi
channel, a game app only uses HTTP to transmit data, attackers can tamper
with the runtime data. If the packages contain any payment information, it may
fool users and make game companies profit loss. For another instance, an app
GET a picture from advertisement server by HTTP, attackers can tamper with
network traffic and load false advertising to cheat users on purpose. And if de-
velopers encrypt sensitive data, there are also numerous misuses of cryptography
in the processing of encryption. Proprietary protocols are in the same situation.

According to the result, only 69 (15.9%) apps use HTTPS as their trans-
mission method. 158 (36.7%) of the apps use other protocols (e.g., proprietary
protocol, TCP, UDP) to transport sensitive data to servers. 203 apps utilize
HTTP as their primary way of network communication. The fact clearly shows
that users’ sensitive data are insecure and easily expose to attackers.

Table 2. Network Port used by Different Protocols

Protocol Type Port Number

HTTP 80; 8000; 8007; 8015; 8080; 8088; 8888

HTTPS 43; 4433; 8020

Proprietary Protocol 5000-6000; 8000-9000; 12000-12100

We also summarize the port numbers used in different protocols, which is
listed in Table 2. Most of them use HTTP protocol as their main methods to
communicate with server. These connections transport resource and sensitive
data, such as users’ authentication informations, geographic coordinates and
even some script codes. Table 2 shows these types of connections that exploit
the port numbers ranged from 8000 to 8080, and the 80 port. Lots of server
developers want to use some similar port to prevent the port occupation or dis-
tribute servers’ load. While, major apps uses the 43, 443, 8020 to implement
HTTPS, and transfer the data which cities users are near by. Table 2 also shows
that there are no particular rules on port numbers, since, it depends on develop-
ers’ hobbies. Therefore our strategy is that we classify each type of connections
by their port numbers.

3.1 Analysis of Proprietary Protocol

In order to analyze the vulnerability of the usage of insecure communications
and assess their prevalence in existing apps, we implement RawDroid to scalably
and accurately examine apps from Google Play and MyApp Android markets. It

An Empirical Study of Insecure Communication in Android Apps 7

consists of Inline Hook to record necessary runtime information, and analysis of
potential weakness. In the following paragraphs, we present key technical details
applied in our analysis framework.

We randomly select 60 apps from the proprietary protocol category to analyze
whether it exists any potential threats, and the result is listed in Table 3. We find
that most apps choose to send sensitive data in the form of plain-text directly by
TCP or UDP without any protections, which are insecure communications. Few
of them use custom algorithms to protect data, but still expose many threats
to users. In order to investigate this situation in real world, we make in-depth
study as follows.

In Fig. 1, we show the overall workflow of the system, which involves sev-
eral steps to determine potential threats in Android apps. Given a target app
to analyze, the first step is to dynamic determine whether apps use insecure
communications, and if so, we capture data packets and network usage status in
the meantime. In the second step, we select data packets of all candidate apps,
and use traffic analysis module to detect the apps whether contains sensitive
data in plaint-text. After this step, we classify apps which use encrypted propri-
etary protocols and re-run them to record method traces of network API and
specified parameters. Finally, in order to determine whether these connections
are indeed vulnerable, we combine program analysis technique to detect and
manually verify the security of proprietary protocols.

Automatic

Traffic Analysis

Manual

Trace

Analysis

Android

Application Automatic execution

&

Traffic Capture

Trace Generation

Flaws

in plaintext

encoded

Fig. 1. Analyse Apps with RawDroid

It is very natural to consider why we use dynamic analysis rather than static
analysis for detecting the security of apps’ network usage. To our knowledge,
many apps will get IP addresses and port numbers not only by hard-code, but
also with dynamically post the requests of clients. Static analytical methods
have no idea to completely identify which servers are available to the clients.
Moreover, static analysis often spends a lot of time and memory that beyond
our control. In order to conveniently obtain the network statuses of apps as
complete as possible, we chose to use dynamic analysis for our initial analysis.

Traffic Analysis This analysis mechanism mainly identifies whether An-
droid apps use plant text by un-common port numbers. We implement this
mechanism in Python. Before analysis, we first use adb pull out the data packets
named by app’s package name from SD card of device. While the aforementioned
techniques greatly select out candidate connections, this is not enough to pre-

8 Yueheng Zhang et al.

cisely analyze and contains too mush useless informations. To our knowledge,
we discover that many developers use port 8080 instead of the port 80 to imple-
ment HTTP protocol. This phenomenon is also found in HTTPS protocol (e.g.,
4433). Based on the above reasons, we also take these port numbers as out filter
conditions.

Secondly, we estimate the candidate suspectable connections according to
the semantic contents of data streams. According to the port numbers, we first
extract out each TCP stream which is resulted from the first module. Then
we preliminarily filter out all the application layer protocols, and remain TCP
or UDP. In the next, we analyze the semantic content and determine whether
the apps have sent plaintext data by un-common port numbers. As our manual
analysis found, apps send data which start with some continuous visible char-
acters, such as the package name, or packages data into a json form. Depending
on these key characteristics, we determine un-protection channels which trans-
mit sensitive data in plain-text. We predefine some key words, such as username,
password, and use them to detect whether there are sensitive data in the network
traffic. Dealing with the apps which use encrypted proprietary protocols, we also
record their runtime trace, and manually analyze the misuse of cryptography in
apps.

Trace Generation To our knowledge, simply recording IP addresses and
port numbers of remote servers provides limited help. In this phase, we need
to log method traces to reduce the complexity of the analysis. We re-run the
candidate apps to use Inline Hook technique to hook key methods and record
method traces and every parameters we are interested in. With these runtime
values, we can simply locate where these key functions are called. Meanwhile,
we capture data packets of all candidate apps during runtime.

In order to implement the method of logging method traces, we use inline
hook technology to hook key network APIs. Android app can access to the
Internet via several different APIs include Jave and native code. In Java, class
Socket and InetSocketAddress both provide interfaces that allow endpoints of a
network connection interacting with servers. A new network connection can be
created by calling the constructor Socket(String dstName, int dstPort) in TCP
or InetSocketAddress(String hostName, int port, boolean needResolved) in UDP.
The parameter dstName and hostName expects a string giving the IP address or
domain name of the destination and the parameter dstPort and port represent
a port number on which the destination is to be contacted. We use Xposed [9]
framework to hook these APIs in Java, log runtime values and record call strack.
In the native code, the API send and sendto models a native network connection.
In this case, we use adbi [8] framework to query informations of remote server
by getpeername and log the buff domain.

In this module, the main challenge is that it is difficult to obtain specific
runtime values and traces the data flow in Java. Just hooking this API may
causes a lot of noisy information. Therefore, in order to reduce the difficulty of
analysis, we use the data packets which is produced by the first step instead of
hooking.

An Empirical Study of Insecure Communication in Android Apps 9

Meanwhile, in the native code, recording where methods are called is also
a challenge. We try to use strace [7], a tool used in tracing system calls and
signals, to address this problem. However, strace produces a large number of
noisy information to interference our analysis. Also, we use the class CallStack or
the function Backtrace, and, not surprisingly, they do not meet our requirements.
In fact, in order to address this challenge, we hook the API send and sendto and
record their return address in memory. According to this address, We read the
file proc/〈pid〉/maps and get the call points of send and sendto.

A snippet of trace and specified value of key network APIs in Java is as
follows:

InetSocketAddress IP: 192.168.1.20 Port: 8888

com.example.testxposed.XModule.printStackTrace(XModule.java:157)

...

java.net.ProxySelectorImpl.lookupProxy(ProxySelectorImpl.java:101)

java.net.ProxySelectorImpl.selectOneProxy(ProxySelectorImpl.java:55)

java.net.ProxySelectorImpl.select(ProxySelectorImpl.java:32)

...

com.noah.king.framework.f.d.a(Unknown Source)

com.noah.ifa.app.standard.service.RotateService.b(Unknown Source)

com.noah.ifa.app.standard.service.RotateService.c(Unknown Source)

com.noah.ifa.app.standard.service.b.run(Unknown Source)

java.util.Timer$TimerImpl.run(Timer.java:284)

The first line is the hooked network API, and runtime values. The following
information is the method trace. By locating the particular Java class name, such
as com.noah.ifa.app.standard.service.RotateService, we can find what function
the class is.

Proprietary Protocol Analysis For those encrypted data streams, it is
a huge challenge to detect which algorithm is used in the app. Given the ex-
isiting works, CDRep [14] has implemented similar function that automatically
detects misuses of cryptographic APIs. The CDRep modules rules of misuses
and matches them with byte code. However it is not available in our case, since
most proprietary protocols have no common and similar rules to match. Some
of them use standard cryptographic algorithm (e.g., AES, DES), and some just
use their own individual method of encryption. Therefore we manually analyze
the specific algorithm in apps both in Java level and native code. In order to
do so, we take the log files as input, to search for interesting connections, and
find their method call traces. With these auxiliary informations, we are able to
quickly locate the functions where data streams are encrypted, and find potential
vulnerabilities.

Limitations Although RawDroid helps to analyze the security of data trans-
mission, it still has to depend on human efforts to validate potential vulnera-
bilities. However, one goal of RawDroid is to contribute to researchers quickly
locate the cryptographic functions. In particular, our work can simply unite with
static or dynamic analysis tools (such as TaintDroid, FlowDroid) to raise preci-
sion and understand the flow of sensitive data sent through proprietary protocol.

10 Yueheng Zhang et al.

RawDroid may have false negatives, since we cannot trigger all connections in
runtime. Moreover, apps will dynamical request the information of servers, and
our filters do not distinguish this kind of network traffic. They could introduce
little noisy information.

4 Evaluation

In this section, we evaluate our systems ability and efficiently identify suspicious
connections on a large set of apps from Google Play and MyApp Android market,
including entertaining, online shopping, and social network communicating. We
use LG Nexus 4 running Android 4.4.3 to evaluate RawDroid. We also root this
phone, because RawDroid deploy Xposed and Adbi to record runtime informa-
tion, which requires root assessment. Then, we review the results of our analysis
and why it happens. At last, we propose some advices to enhance situation.

In order to verify the results and draw a conclusion, for our study, we ran-
domly select 60 apps from the proprietary protocol category. Table 3 presents
the results of our analysis. We take the network traffic of each app as input, and
find that most (54) of them only use TCP/UDP to transmit plain text with on
deeper protection. More in-depth discussions are outlined in the following. We
are also noted that there are only six apps that use cryptographic algorithms
to protect data security, but still existing the misuse of cryptography. However,
none of them use sound encryption mechanisms. The fact also reveals that a
large number of developers have no security experience and users sensitive data
is insecure to expose to the attackers. In order to consider what we found, we
categorize the results into 2 types such as Plain Text and Proprietary Protocol.

Table 3. Result of Proprietary Protocol Analysis

Potential Weakness The Number of Apps

Plain-text 54

Hard-coded Key 3

Plain-text Key Exchange 3

4.1 Plain-Text

As Table 3 shown, there are many (54) Android apps that just use TCP protocol
to carry information without any encryption. As we all know, TCP provides
reliable, ordered, and error-checked delivery of a stream between apps running
on hosts communicating over an IP network, however it does not support safe
channel to transport data. In consequence, it is an untrusted channel and easily
exposed to attackers. According to the content of data streams, we summarize
3 categories as following.

An Empirical Study of Insecure Communication in Android Apps 11

Sensitive Data. As our analytical results presented, this plaint text channel
send users’ name, password, cell-phone number, geographic coordinates, device
information, session token, even the history of shopping and price of commodi-
ties. In some public network environment, attackers just sniffer router and cap-
ture packets with network analysis tools, and they can also get a view of users.

Controlling Data. Game apps often employs some bites to control game
process, such as the level of VIP, virtual product trades, health point of enemy,
and heartbeat packets. With analyzing the meaning of each bites and modifying
necessary values, game companies suffer great losses.

Pushing Message. Pushing message is a common phenomenon in the ex-
isting apps, which is offered to end users with notification and information from
remote server to apps. Some of messages are significant since developer-run severs
may send update message of versions and even some sensitive data. Most pushing
message, as third-party libraries, are employed into apps, such as Igexin, JPush
and MiPush in China. According to our discovery, only a small part of these
pushing libraries use security channel to protect their messages. Igexin [1], one
of the most popular pushing company, utilizes customize algorithm to encrypt
messages and the key is sent with cipher message in plaint text.

4.2 The Misuse of Cryptography in Proprietary Protocol

After we manually analyze 60 apps, there are 6 applications that use proprietary
protocols to transport data. 5 of them contain same kind of third-party libraries,
which is provided by Instant Messaging Cloud companies. This kind of IM im-
plements an unique protocol that transports informations of authentication and
chatting message. In order to improve users’ security awareness and understand-
ing, we study how they prevent their content against hackers in detail, which is
described in Section 4.3. The rest of apps, a financial app, use Caesar cipher to
encrypt name and price of stock. According to the encryption methods, we also
summarize 2 types of misuse of cryptography as follows.

Hard-coded Key. As our manual analysis resulted, apps use standard cryp-
tographic algorithms with hard-coded key. In order to reduce costs of program-
ming, developers are unwilling to design a key exchange mechanism to guarantee
the security of communications. With general considerations, hard-coded key is
easily exposed to attackers after reversing the binary.

Transfer key in plaintext. com.jedigames.guaji.xiaomi is a game app
which can communicate with other gamers during playing. It sends pain-text
key in the beginning of game and then the encrypted chatting messages follows.
Attackers can just capture the data packets and decrypt the specific content of
messages.

In summary, the situation of proprietary protocols is common in Android
apps. Some apps attempt to send sensitive data intentionally, to avoid traf-
fic monitor. What is more, some developers, with no security experience, build
softwares for scalability and business convenience. However, unsecurity chan-
nel exposes users’ data to pubilc. While some encrypted protocol, without safe
mechanism of key distribution, uses hard-coded or plaint text keys which can

12 Yueheng Zhang et al.

be easily found. To avoid this unsafe vulnerability, we provide recommendation
to developers that must make use of a sound standard protocol to transport
their data such as HTTPS. Even with HTTP, each important data must be en-
crypted by sound and safe algorithm. More importantly, a security key exchange
mechanism, such as Diffie-Hellman, is necessary to be applied into protection.

4.3 The Misuse of Cryptography in Proprietary Protocol

In this section, we conduct the misuse of cryptography on two selected third-
party libraries from Instant Messaging Cloud provider. With the popularity of
Android platform for mobile Internet industry, apps which add communication
functions, use IM to improve user experience. We find that there are at least
30 apps, each of which has been downloaded for 2 million times from game and
sociality categories, that use these two libraries. And more than 30 thousand
subscribers chose this libraries in Android or iOS platform. According to analysis
results, most of them use proprietary protocols with custom algorithm, thence,
we investigate the point that whether there are security risks. These case study
both show that, although most of these third-party libraries use a proprietary
encryption protocol to interact with the servers, and declare their own protocols
robust and security, cryptography misuse is not uncommon. Finally, we also
describe a attack model for each case.

GotyeIM com.open demo is a sample app for GotyeIM, one of the most
popular IM provider in China, which can download from its official website. Its
original intention is that provides developers a demo to quickly adapt, and it
contains all needed IM libraries. GotyeIM first sends its authentication informa-
tion to server. When it succeeded, the server sends a 32-byte pain-text key A to
its Android client. What is more, in native, app xor a hard-coded key B with the
key A to product a real key. After pre-process, app sends the key A to chatting
server and encrypts user’s chatting messages, login informations, session tokens
and history records with 3DES-ECB. It is worth mentioning that this app sends
request data with the key A and a constant string “AES” as a fake algorithm
tip.

Attack Model In this threat model, we assume that victims and attackers
are both in a same public environment, such as cafe, book store. We also assume
that victims trust the proprietary protocol in GotyeIM, and are willing to use it
to chat sensitive data with others. The objective of attackers is to hijack app’s
sessions and even preform a MITM attack. To prepare for such attacks, attackers
need to capture victims’ data packets. After that, attackers use the key A which
can be found in the beginning of the connections, xor the hard-coded key B to
product the real key. At last, attackers use the real key to decrypt messages with
3DES-ECB.

RongLian com.yuntongxun.ecdemo is a sample Android app for another
popular IM provider called RongLian which has cooperation with hundreds of
companies. We download the demo from its website and analyze it manually.
The result shows that this third-party library encrypts user’s chatting history
and messages to chat server with hard-coded key. The app defines a function

An Empirical Study of Insecure Communication in Android Apps 13

called AES, however it implements as a simple encryption method that encrypts
data based on a permutation table. The most noteworthy is that its decryption
function can be searched by Google [2]. We try this Google’s version to encrypt
and decrypt app’s data, not surprisingly, we easily obtain user’s private data.
Finally, the library encapsulates all data into Protocol Buffers, a method of
serializing structured data without data encryption by Google, and sends it in
TCP.

Attack Model Our attack model assumes that attackers control the router
to capture users’ network flow by some methods, for example, ARP attack, a
fake AP, etc. The goal of attackers is to extract chatting messages from data
streams and send it to a server. We also assume that the apps which contain
RongLian libraries is installed by the user. To achieve this, attackers need to
extract chatting message field from Google Protocol Buffers [10], and then use
the decryption codes which can be searched from Google [2] to decrypt the
ciphertext with hard-coded key.

0

200

400

600

800

1000

1200

1400

1600

3D Access Data Total

Normal

RawDroid

Fig. 2. 0xbechmark Result

4.4 Performance

Notice that native code is a common way to be used for performing heavy compu-
tation and return results back to Java, while Java code is used more in building
UI or implementing logics of general functions. Therefore, it is necessary to test

14 Yueheng Zhang et al.

RawDroids performance to evaluate the running states of RawDroid in real-world
Android devices.

In order to evaluate RawDroids impact on performance in Android, we use
0xbechmark [6], a comprehensive benchmark tool, to perform measurements on
the Nexus 4 device. We depict our results in Fig. 2. The y axle is the run time
for each category and the unit is millisecond. We discuss the related data of 3D,
access and I/O time. Notice that in all categories, except Data, the gap of run
time overhead is not noticeable. RawDroid preforms less than 5% on average.
However, overhead becomes significant in Data, since most apps frequently use
raw sockets to network communication, we need to hook each connection and log
some specific parameters. RawDroid preforms additional 10% overhead on this
work. Overall, our benchmark experiments demonstrate that RawDroid makes
a minimum impact on system performance.

5 Related Work

To the best of our knowledge, there is no in-depth discussion of the security about
proprietary protocol and raw socket usage. Most relevant works are static and
dynamic analysis for detecting leakage of sensitive data or focusing on security of
HTTP(S) in Android platform. In this section, we describe these related works.

Privacy Leakage A series of works in the security of privacy disclosures
on Android platform have been proposed. Both static, including Flowdroid [15],
TainDroid [16], and dynamic techniques, including ContentScope [17] and CHEX
[18], are used to detect the privacy disclosure. In particular, Flowdroid [15]
checks whether Android apps leak private data from source to sink by static
taint analysis. TainDroid [16] dynamically taints sensitive information to trace
where privacy can be leaked. It alerts users when privacy is sent to the network.
ContentScope [17] examines a large number of apps and analyzes whether apps
expose content provider to other apps. CHEX [18] presents a method to stat-
ically discover sensitive flow. Also, in Securacy [24], Ferreira D et al. develop
an app to help users fully know what their apps do. However, it considers all
un-regular port as unsafe, which is a arbitrary decision.

The main idea in detecting privacy leakage is that uses taint analysis tech-
nique to discover sensitive information flow from custom source to sink. However,
Flowdroid [15] costs too mush memory to analyze a app. Meanwhile, it is not
feasibility that TainDroid [16] modifies a system to support its function. There-
fore, some researchers propose similar tools with natural language processing
technique such as Describeme [19], Supor [20] and Uipicker [21].

Security of HTTP(S) For the past few years, there has been less works
related to the security of HTTP(s) in Android platform. For the security in
HTTP, most works discuss how Android apps protect user authentication. In
Appcracker [13], Cai F et al. presents Appcracker and checks the vulnerabilities
of user authentication in a public network. In [22], Liu Hui et al. proposes a
methodology to evaluate potentially vulnerable of user authentication in Android
apps. Meanwhile, in HTTPS, Fahl S et al. Mallodroid [12] presents a tool to

An Empirical Study of Insecure Communication in Android Apps 15

detect the state of SSL in Android apps and draw a conclusion about misuse
of SSL. Also, Sounthiraraj et al. Hunter [23] combines both static and dynamic
analysis, and focuses on analyzing the prevalence of vulnerability in Android
apps against MITM attacks.

6 Conclusion

We conduct the first step to investigate the usage and security of network pro-
tocol in the most popular Android apps. Our result shows that 36.7% apps use
insecure communications. We design and implement a tool, RawDroid, to deter-
mine whether apps contain these vulnerabilities. Most of these vulnerabilities are
caused by sending plain-text through HTTP or TCP. Also, some apps contain
third-party libraries which misuse cryptographic algorithms to build proprietary
protocols. We envision that our study can raise the attention of these vulnera-
bilities for security researchers and app developers.

References

1. Igexin http://www.wooyun.org/bugs/wooyun-2010-0185354

2. CodeSearch https://searchcode.com/codesearch/view/13566752/

3. HTTPS Everywhere https://www.eff.org/https-everywhere/

4. HTTPS https://en.wikipedia.org/wiki/HTTPS

5. Google Monkey http://developer.android.com/guide/developing/tools/

monkey.html.

6. 0xbenchmark 0xbenchmark.appspot.com

7. Strace https://en.wikipedia.org/wiki/Strace

8. The Android Dynamic Binary Instrumentation Toolkit https://github.com/

crmulliner/adbi

9. Xposed http://repo.xposed.info/

10. Google Protocol Buffers https://developers.google.com/protocol-buffers/

11. M. Marlinspike. More Tricks For Defeating SSL In Practice. In Black Hat USA,
2009

12. Fahl S, Harbach M, Muders T, et al. Why Eve and Mallory love Android: An
analysis of Android SSL (in) security[C]//Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 2012: 50-61

13. Cai F, Chen H, Wu Y, et al. Appcracker: Widespread vulnerabilities in user and
session authentication in mobile apps[J]. MoST 2015, 2014.

14. Ma, Siqi, et al. ”CDRep: Automatic Repair of Cryptographic Misuses in Android
Applications.” Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security. ACM, 2016.

15. Arzt, Steven, et al. ”Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps.” ACM SIGPLAN Notices 49.6
(2014): 259-269.

16. Enck, William, et al. ”TaintDroid: an information-flow tracking system for real-
time privacy monitoring on smartphones.” ACM Transactions on Computer Systems
(TOCS) 32.2 (2014): 5.

16 Yueheng Zhang et al.

17. Jiang, Yajin Zhou Xuxian. ”Detecting passive content leaks and pollution in an-
droid applications.” Proceedings of the 20th Network and Distributed System Se-
curity Symposium (NDSS). 2013.

18. Lu, Long, et al. ”Chex: statically vetting android apps for component hijacking
vulnerabilities.” Proceedings of the 2012 ACM conference on Computer and com-
munications security. ACM, 2012.

19. Zhang, Mu, et al. ”Towards automatic generation of security-centric descriptions
for Android apps.” Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2015.

20. Huang, Jianjun, et al. ”Supor: Precise and scalable sensitive user input detection
for android apps.” 24th USENIX Security Symposium (USENIX Security 15). 2015.

21. Nan, Yuhong, et al. ”Uipicker: User-input privacy identification in mobile applica-
tions.” 24th USENIX Security Symposium (USENIX Security 15). 2015.

22. Liu Hui, Zhang Yuanyuan, Li Juanru, Wang Hui, Gu Dawu. Open Sesame! Web
Authentication Cracking via Mobile app Analysis. in 18th Asia Pacific Web Con-
ference (APWEB 2016). Suzhou, China. Sept 23-25, 2016

23. Sounthiraraj, David, et al. ”Smv-hunter: Large scale, automated detection of ssl/tls
man-in-the-middle vulnerabilities in android apps.” In Proceedings of the 21st An-
nual Network and Distributed System Security Symposium (NDSS14. 2014.

24. Ferreira D, Kostakos V, Beresford A R, et al. Securacy: an empirical investigation
of Android applications’ network usage, privacy and security[C]//Proceedings of
the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks.
ACM, 2015: 11.

