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Abstract—The rapid-iteration, web-style update cycle of An-
droid helps fix revealed security vulnerabilities for its latest ver-
sion. However, such security enhancements are usually only avail-
able for few Android devices released by certain manufacturers
(e.g., Google’s official Nexus devices). More manufactures choose
to stop providing system update service for their obsolete models,
remaining millions of vulnerable Android devices in use. In this
situation, a feasible solution is to leverage existing source code
patches to fix outdated vulnerable devices. To implement this, we
introduce EMBROIDERY, a binary rewriting based vulnerability
patching system for obsolete Android devices without requiring
the manufacturer’s source code against Android fragmentation.
EMBROIDERY patches the known critical framework and kernel
vulnerabilities in Android using both static and dynamic binary
rewriting techniques. It transplants official patches (CVE source
code patches) of known vulnerabilities to different devices by
adopting heuristic matching strategies to deal with the code
diversity introduced by Android fragmentation, and fulfills a
complex dynamic memory modification to implement kernel
vulnerabilities patching. We employ EMBROIDERY to patch
sophisticated Android kernel and framework vulnerabilities for
various manufactures’ obsolete devices ranging from Android 4.2
to 5.1. The result shows the patched devices are able to defend
against known exploits and the normal functions are not affected.

I. INTRODUCTION

According to the official statistics released by Google [1], as

of March 6, 2017, only 34.1% of the devices are running the

latest Android OS version (6.0+). Many devices with previous

versions of Android are at a higher risk of malicious attacks

due to the disclosed vulnerabilities of older Android systems.

Once the vulnerabilities have been disclosed, experienced

attackers can quickly utilize them to exploit the device. A

successful exploit may lead to immediate malware infection

or important information leakage such as bank accounts, even

remote users gaining control over infected systems. Therefore,

timely patching is always ideal. However, patching existing

vulnerabilities for different Android devices is often hindered

by the diversification and fragmentation of Android ecosystem.

Only a few devices (e.g., Nexus devices of Google) can receive

the Over The Air (OTA) update related to latest Android’s

monthly security updates. For most manufacturers, it may

take some time to make the patching code available thus the

security update often tends to lag behind for a considerable

long period. For obsolete devices, the situation is even worse:

device manufacturers focus more on promoting new devices

rather than providing patches for obsolete devices, and patches

are only provided to their in-stock Android devices instead of

those obsolete devices due to the complexity of maintaining

multiple patching schemes. For instance, Motorola has given

up its monthly security updates due to the difficulty of deploy-

ing on a monthly basis for all devices [2]. As a result, millions

of obsolete Android devices (OS version < 6.0) in use may

never receive patches and are exposed to severe security threats

nowadays.

The lack of vulnerability patching for Android devices is

mainly due to the fragmentation of the Android ecosystem.

Unlike iOS devices with unified operating system, the multi-

tude of manufacturer customized Android systems introduced

different versions of Linux kernel and diversified program

executables/libraries in binary code form. As a result, the stan-

dard patching scheme of a specific vulnerability, i.e., patching

scheme provided by Android Open Source Project (AOSP))

cannot be directly applied to many customized Android sys-

tems. Generally, two main impediments exist for applying one

patching scheme to diversified Android devices: First, for one

certain code base from AOSP, some manufacturers remove or

modify functions to generate an alternative version, and the

vulnerabilities may also be moved to different places. Thus a

typical patching process fails to work. Second, when a man-

ufacturer stopped supporting one device and did not release

the source code related to this device, the patching requires

manipulating the binary code of vulnerable OS and applica-

tions directly. Working on the binary code determines that the

patching scheme is very hard to be universal: manufacturers

use different compilers or compilation strategy to generate

optimized binary code. Therefore, binary code’s diversity of

specific executable (e.g., a shared library responsible for media

file decoding) on different devices is significant, and existing

patches released for the code of standard AOSP cannot be

transited to these diversified executables.

To help still-in-use obsolete Android devices defend against

publicly revealed exploits, and address the issue of Android

fragmentation to generate adaptive patches, we introduce EM-

BROIDERY, an automated patch generation system. Since it is

impossible to obtain each manufacturer’s compiling environ-

ment and source code, EMBROIDERY deals with binary exe-

cutable on the device directly. It focuses on the patching of vul-

nerabilities in kernel and native libraries of obsolete Android

devices (OS version < 6.0). The workflow of EMBROIDERY

begins with a heuristics based vulnerability locating, which

helps find the assembly code line where the vulnerability and
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(a) case 1 (b) case 2

Fig. 1. the fragmentation of CVE-2015-3864

essential patching information for the patching process exist.

Then a binary rewriting step is employed to patch existing vul-

nerabilities. EMBROIDERY generates different patching code

for diversified devices. Particularly, EMBROIDERY fulfills a

complex dynamic memory modification to implement kernel

vulnerabilities patching, which is compatible with some en-

hanced kernel memory protection features.

To evaluate the effectiveness of EMBROIDERY, we tested it

with six popular manufacturers’ nine obsolete Android devices

to check whether two sets of well-known vulnerabilities can

be patched. The evaluation demonstrated that the patches

generated by EMBROIDERY can be accurately applied to the

vulnerable point in binary executables of those devices, and

the vulnerabilities were fixed after the patches were applied.

We also summarized the diversities of vulnerability for each

device and found that EMBROIDERY is very helpful for code

patching when dealing with such diversities.

The main contributions of this paper are:

a. EMBROIDERY transplants official security patches (CVE

source code patches) that are only suitable for certain

Android devices (e.g., Nexus devices) to a broader spec-

trum of Android devices. The heuristic matching strate-

gies adopted by EMBROIDERY helps locate not only the

appropriate places in binaries for patching code insertion

but also analyze the essential patching information for the

patching process.

b. EMBROIDERY generates binary code patches of kernel

and system framework for different Android devices de-

spite their diversifications. EMBROIDERY employs binary

rewriting to adapt typical restrictions of Android devices

(e.g., device locking that prohibits the re-flashing of

kernel and system partition). Particularly, EMBROIDERY

addresses the issue of kernel memory protection measures

that hinder common kernel hot patching schemes and

achieves stable and generic kernel memory patching.

II. PROBLEM OVERVIEW

A typical scenario for Android system patching often starts

with the discovery of a vulnerability that affects not only the

latest version of Android but also all past versions. Generally,

the vulnerability is published through Google’s Android Se-

curity Bulletin released monthly with moderate information.

Then details and relevant exploits may be disclosed by other

researchers or not. In this situation, however, only the latest

version of Android system and related devices (e.g., Nexus

smartphone) receive the patch. Obsolete versions (e.g., An-

droid 4.4), although are often also affected by such

Listing 1
THE PATCHES OF CVE-2015-3864

1 status_t MPEG4Extractor::parseChunk
2 (off64_t *offset, int depth) {
3 ...
4 size = 0;
5 }
6 + if ((chunk_size > SIZE_MAX) ||
7 + (SIZE_MAX - chunk_size <= size)) {
8 + return ERROR_MALFORMED;
9 + }

10 uint8_t *buffer = new uint8_t[size + chunk_size];
11 ...

vulnerability, may never receive corresponding patches. To

fix those vulnerable devices, a third-party patching scheme

is expected. In particular, this paper focuses on the patching

of native code of Android kernel and system framework,

since the bytecode patching has been well studied by other

researches [3]. The patching of vulnerability in native code

is more complicated compared to bytecode patching due to

its diversification. Unlike Java bytecode that is unified for

different platforms, the released native code varies signifi-

cantly because of the fragmentation of Android ecosystem.

Take the assembly code of the CVE-2015-3864 as an example.

Figure 1 illustrates two different compiled versions of the same

vulnerable function (source code of the vulnerable function

can be seen in Listing 1). The patch of this vulnerability needs

to add a check before the memory allocation (new). However,

the assembly implementation is different at the level of binary

code. As a result, the patching process must consider such

differences at the assembly level (different register allocation,

instruction reordering, branch inversion, etc.) due to the di-

versity of compilation. Moreover, to apply the patch at the

binary code level, essential patching information is needed.

This involves the binary code analysis of related variables and

addresses. For instance, the patch in Listing 1 requires a binary

analysis to identify the registers storing size and chunk size,

the address of return code when the check fails (which involves

operations about loading the value of ERROR MALFORMED,

stack adjusting and arguments restoring).

In detail, the following issues should be carefully handled

to fulfill an effective binary level patching:

a. Assembly differences. Due to the compilation differences,

the assembly code varies much (e.g., different register

allocation, instruction reordering). To solve the problem,

the patching utilizes heuristic matching strategies to lo-

cate and perform assembly a code analysis for patching
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information.

b. OS variances. A specific vulnerability may be disclosed in

a higher version of Android (e.g., 6.0). However, the host

function of this vulnerability may have a different name or

even not exist in past versions of Android. In this case, the

patching has to firstly search the location of vulnerability

with code similarity strategy.

c. Structure definition. A typical diversification is that the

definitions of some data structures have been changed by

the manufacturer. This modification leads to the changes

at assembly level including the offset between a certain

member function or data member, and the structure in-

stance address. Thus the binary code patching should not

rely on such hard-coded constants.

d. Reordering.

Sometimes basic blocks may reorder. For example, the

location of return code (stack restore and function return)

may be placed in the middle of program control flow.

Thus the locating process cannot just search the code lines

straightforwardly according to the logic order of source

code.

Another main obstacle of our discussed patching is how

to deal with kernel vulnerabilities. Although compared with

system framework vulnerabilities, kernel objects diversifica-

tion are less complex, kernel patching comes out some other

fragmentation issues. Different manufacturers apply different

kernel compilation mode and kernel protection features, which

may cause trouble for kernel patching. First, some patching

methods rely on the use of Loadable Kernel Module (LKM)

to patch the vulnerable kernel. Nonetheless, it is difficult

to generate a generic pre-compiled kernel module due to

the fragmentation of Android ecosystem. What’s more, many

devices including Google Nexus disable the LKM support

or implement module signing. The kernel specifically pro-

hibits loading a module compiled against a different kernel

version. In addition, some manufacturers make use of Trust-

Zone to ensure the kernel module cannot be loaded even

the device was compromised. The kernel module will go

through a mandatory digital signature verification happening

in TrustZone. As a result, kernel patching with LKM is not

feasible. Second, directly rewriting the kernel binary code

is not straightforward. Since updating the kernel is strictly

restricted by bootloader lock, it is not able to apply statical

binary patching for vulnerable kernel image. Hence, the only

way is to dynamically rewrite the kernel memory. However,

Android kernel nowadays has utilized many features to harden

itself and ensure the integrity. Direct kernel memory modifi-

cation violates common read-only kernel text/data protection

policies such as CONFIG STRICT MEMORY RWX [4] and

CONFIG DEBUG RODATA [5]. Besides, the patching should

also consider how to find an executable memory area to place

the patching code, which may be hindered by the memory

W∧X protection.

III. EMBROIDERY

We put forward EMBROIDERY, a patching system which

fulfills binary code patching task for Android kernel and

framework vulnerabilities with adaption to Android diversifi-

cation and fragmentation. The purpose of EMBROIDERY is to

generate patches for those obsolete devices that cannot receive

corresponding security update. The key challenges here are

how to find a universal approach to pinpoint all vulnerabilities

precisely in binary code, and how to patch them according to

existing security updates. In general, EMBROIDERY considers

six crucial factors to implement an effective binary level

patching for obsolete Android devices.

1) Patch details. EMBROIDERY leverages the source of

the monthly Android Security Bulletin [6]. Since the

security updates released by Google are usually related

to Common Vulnerability and Exposures (CVEs), we

focus on generating patches based on specific CVEs.

Our EMBROIDERY patching system relies on a manual

input of the patching details according to the details

of CVE, which includes the vulnerable functions and

the corresponding patching code. Since Google publishes

Android Security Bulletin every month, containing details

of security vulnerabilities that affect Android devices,

we can obtain the latest Android security information

including the CVE ID, security vulnerability details, and

the assessed severity. We firstly collect the details of these

CVEs to obtain patch details (vulnerable functions and

how to patch them), which are listed in the AOSP source

code diff information.

2) Vulnerability locating. Since it is impossible to obtain

each manufacturer’s source code and publicly released

patches are often based on latest version of Android,

a vulnerability locating procedure is required to search

vulnerable binary executable and find the vulnerability in

different versions of Android OS and different devices.

Particularly, the locating of vulnerability is to firstly find a

host function, and to further determine the patching point

and obtain the essential patching information (e.g., related

registers storing arguments, return address) for patching.

EMBROIDERY locates the vulnerable functions with the

help of function symbols. A patching point is the exact

assembly code line that EMBROIDERY overwrites with a

branch instruction, which links to the patching code. In

Figure 1, the patching point is the blx line. The vulnerabil-

ity here requires an argument check before the new call to

fix. Thus EMBROIDERY overwrites the patching point and

replaces it with a branch instruction, leading the control

flow to the inserted argument checking procedure. EM-

BROIDERY introduces some heuristic matching strategies

used in previous studies, which leverage code similarity

metrics to help determine the position of patching point

and patching information.

3) Binary rewriting. The vulnerable functions identified by

EMBROIDERY are in kernel memory or shared objects,

which are both binary executables. To patch them, a
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binary rewriting process is required. It places the patch-

ing code in a new executable memory area, and then

redirects the original control flow by rewriting patching

point with branch instructions to lead the execution to

the patching code. An important point here is that the

binary rewriting should not replace the entire vulnerable

function. After manually reversing and analyzing various

related binaries, we have found that one specific func-

tion in different devices may change much due to the

manufacturer’s modification. Therefore, replacing it with

a patched version compiled from the original source code

base introduces potential corruption, although fixing the

vulnerability. To ensure functionality in every device from

different manufacturers, EMBROIDERY only modifies the

vulnerable assembly code lines.

4) Device modification. Existing Android devices do not

always provide the permission for users to modify the

original image of critical system partitions. As a result,

EMBROIDERY requires root permission to circumvent

the restriction and fulfill such modification. The fea-

sibility of this requirement is due to the existence of

universal Android exploits for obsolete devices. Although

EMBROIDERY leverages existing exploits to obtain root

permission, it only utilizes the permission to fulfill the

patching instead of other privilege operations. After the

patching, EMBROIDERY would release the permission so

that it will never be abused. Only if the manufacturers

supply a ROM applying the newest security patch avail-

able in time for a certain device, users can directly flash

a new whole OS to the most recent Android version.

But the manufacturers need time to adapt the device

and sometimes they even ignore the security update.

EMBROIDERY can provide a timely patching for these

obsolete devices.

5) Kernel hot patching. Compared to conventional static

patching approach, the patching of Android kernel re-

quires adopting hot patching due to the infeasibility of

re-compiling kernel image and re-flashing kernel image

partition. Considering the restriction of many devices

that does not allow the installation of kernel module,

EMBROIDERY directly accesses and rewrites the kernel

virtual memory through /dev/kmem [7] [8] with the ob-

tained root permission. Despite similar code disassem-

bling and vulnerability searching, a distinguishing step

in EMBROIDERY’s hot patching is the circumvention

of kernel memory protections. As memory modification

is in conflict with kernel protections such as read-only
kernel text/data, a straightforward modification fails to

work. EMBROIDERY elaborately resets the kernel page

tables and refreshes the permission to guarantee that

the modification would not trigger a violation and crash

the system. Therefore, EMBROIDERY adopts a universal

dynamic kernel patching method with compatibility of

kernel memory protection features, which can be success-

fully applied to most devices with Android OS version

4.x and 5.x.

6) Bootstrap. Since we apply the kernel hot patching, EM-

BROIDERY is required to launch at Android bootstrap

time. We can put the system in Android’s boot partition

and modify the booting script file to launch system ser-

vice during the early stage of Android system’s booting.

In the following sections, we detailed how an Android

device with a vulnerable kernel or system framework is fixed

by EMBROIDERY despite the Android fragmentation issues.

IV. LOCATING

This section details how EMBROIDERY locates the vulnera-

bility and obtains the essential patching information. EMBROI-

DERY focuses on the patching of Android kernel and system

shared objects. The disassembling results of these binaries are

usually considered as reliable since they were generated using

conventional compilation options. Based on the disassembling

results, EMBROIDERY introduces heuristic matching strategies

to address the Android fragmentation issue.

A. Locating Vulnerable Functions

EMBROIDERY firstly locates the vulnerable function with

the help of function symbols. For kernel vulnerabilities, EM-

BROIDERY obtains the kernel symbols by reading /proc/kall-
syms file. Until Android 5.1, ASLR is still not applied on

kernel level and symbol addresses are still being determined

at compile-time [9]. Hence the addresses of kernel sym-

bols can be found in the /proc/kallsyms file with sysctl1

kptr restrict [10] enabling at runtime (with the root privi-

lege, it can be enabled by setting the kptr restrict to 0).

As for framework vulnerabilities, the symbols of the shared

objects exported are utilized, as Android system objects are

not stripped. In most CVEs, the vulnerable function is an

exported function. Otherwise, EMBROIDERY makes use of the

cross-reference of the vulnerable function in other exported

functions. According to the AOSP source code, EMBROIDERY

evaluates which exported function has called the vulnerable

functions and locates this function with symbols. If the caller

is still not an exported function, EMBROIDERY traces back to

the upper caller recursively until finding an exported function.

Then EMBROIDERY relies on the call flow graph of the

exported function to locate the vulnerable function.

B. Locating Patching Point

After locating the vulnerable function, EMBROIDERY fur-

ther locates the exact patching point with heuristic matching

strategies. Summarized by previous studies and empirical

binary analysis of the realistic vulnerabilities, our proposed

heuristic matching strategies leverage many code similarity

metrics to help determine not only the patching point but also

the essential patching information. Thus, by making use of

the existing CVE knowledge and realistic analysis results,

EMBROIDERY summarizes for a certain CVE the common

code similarity metrics shared by different devices. Then it

utilizes these code similarity metrics to perform matching

and locating despite Android fragmentation. Generally, the

following code similarity metrics are leveraged:

50



• Normalized operands. A patching point often involves

a certain instruction in assembly code, and this instruc-

tion is generally related to particular mnemonics and

operands. Due to the different development and compi-

lation environments, there are different representations

at the assembly level (register allocation, instruction

reordering, branch inversion, etc.), which hinder the anal-

ysis of binary code. Thus, EMBROIDERY normalizes the

operands and partitions them into different categories:

register references, memory references, immediate, co-

processor register type and real number like the method

proposed by Sbjrnsen et al. [11]. This helps normalize

the assembly instructions and solve the problem that

compilers may make different operands choices.

• Call reference. A call to an exported function is conspic-

uous and can be quickly located in assembly code lines.

Thus, EMBROIDERY makes use of cross-reference of the

function call to help locating like the method proposed by

Yamaguchi et al. [12] [13]. If there is an exported function

call nearby the patching point, EMBROIDERY locates

that function call with function symbols to approach

the patching point. Since the candidate area is reduced,

EMBROIDERY can conduct a precise search around the

neighbor code area to identify the patching point by

specific mnemonics (e.g., add, bl).

• Constants. If the vulnerable function involves special

constants, it is helpful to utilize these constants to quickly

match and locate the related code line [14].

• Specific-purpose registers. If the patching point involves

specific-purpose registers (e.g. the parameters or return

value of a function call), EMBROIDERY identifies these

registers and locates the related code line by virtue of

ARM calling conventions. For example, there is patching

point involving the first parameter in a function call.

EMBROIDERY locates that function call and performs

a simple taint analysis to search all the references of

register r0 before the function call (the first parameter

is stored in register r0). As all the code lines involving

references of register r0 are obtained, EMBROIDERY

evaluates them to find the patching point. Moreover, for

the buffer overflow patching, it may be a good choice

to target at register sp and fp. These specific-purpose

registers are useful to help understand the program crash

information.

• Offsets. Certain offsets to particular pointers (e.g., this
pointer, a certain struct) can be leveraged to help locating.

If the vulnerability involves a member function or data

members of a C++ class, we can locate it by observing

how this pointer is used to invoke member function or

access data member. As this pointer is always stored

in register r0 in ARM as the first argument in C++

member functions, EMBROIDERY performs a simple taint

analysis to search all the references of it and finds those

concerned ones. And the offsets of certain members can

be calculated according to the definition of struct or

class in AOSP source code. It should be noticed that

definitions may be modified by some manufacturers so

that these modified binaries have different offsets for a

certain member. To solve this problem, we have analyzed

different manufacturers’ binaries and found that in most

cases the definitions of struct or class are the same as

the official ones in AOSP. While for special cases, we

found that although the definition has been changed, the

offset between two neighbor members usually remains.

So based on this feature, EMBROIDERY uses the relative

offset to find out target members.

C. Analyzing Patching Information

Once the patching point is located, EMBROIDERY continues

to analyze the assembly code beside the patching point to

provide essential patching information for the patching pro-

cess. For example, as for logic vulnerabilities, many bugs are

usually fixed by adding the missing sanitization checks. If the

check fails, the function should return a result representing

failure to the caller. The next step in those cases is to find the

return code (load the return value representing failure, adjust

the stack, return to the caller). Thus, EMBROIDERY conducts

a binary code analysis on related registers and memory with

heuristic matching strategies to obtain the patching informa-

tion.

• Relevant registers and memory analyzing. In most cases,

the patching information is related to specific registers

or memory addresses, and around the patching point.

EMBROIDERY conducts a search around the patching

point and analyzes the relevant registers and memory.

And the code metrics we discussed above are utilized to

help analysis. Take the CVE-2015-3864 as an example,

EMBROIDERY backtracks the nearby instructions around

the patching point to find the related registers storing

chunk size and size. Since the registers are related to

function parameters, they can be identified with the

Specific-purpose registers method.

• Return code analysis. As we discussed, the return code

has to be found if an added check fails. The return code is

the address of the control flow leading to the code about

stack adjusting and argument restoring, which is unique

in one function. For ARM, processors have featured the

Thumb instruction set to improve compiled code-density.

The crucial consideration is the switch between ARM

and Thumb state. There are four common no-condition

branch instructions in Thumb: branch (B), branch with

link (BL), branch with the mode switch (BX), branch

with link and mode switch (BLX). A failure return code

always uses simple branch instruction, as it does not

need link and mode switch. Besides the return value

is loaded before the branch instruction. The location

where the instruction jumps to can also be inferred by

analyzing the branch instruction. So the normal return

code pattern is that program jumps to another address

with simple branch instruction after loading an immediate

value. Hence, EMBROIDERY can locate the return code

by matching these features.

51



Fig. 2. Choosing patching point

V. PATCHING

With patching point and essential patching information

collected in the locating process, EMBROIDERY automatically

generates different patches for various Android devices. Then

EMBROIDERY conducts the dynamic memory rewriting for

kernel vulnerabilities and static object rewriting for framework

vulnerabilities respectively to apply the patches.

A. Generating Patches

For a certain CVE, EMBROIDERY introduces a binary code

template and fills the collected information into it to generate

the adapted patch for various Android devices. The key is to

link the patching code to existing code. EMBROIDERY rewrites

the patching point with branch instruction and redirects the

control flow to the patching code. There are two points needed

to pay attention to. One is the switch between ARM and

Thumb mode. Since the patching code is usually short and

pithy, EMBROIDERY generates the code in Thumb mode to

reduce memory requirements and cost. Thus, EMBROIDERY

makes use of branch instruction with link to redirect the

control flow to patching code (the return address is automat-

ically stored in lr), and utilizes the instruction mov pc, lr in

patching code to get back to the normal routine. Another is

the instruction size problem. When the size of patching point

is not fit for the size of rewritten branch instruction, we need

to choose a new patching point. Figure 2 gives a concrete

example of how to appropriately choose the patching point

when considering the instruction size: the size of the original

patching point subs r0, #10 is just two bytes. However, since

the target address of the patching code area is usually far

from the patching point, EMBROIDERY has to rewrite it with

a four-byte branch instruction (long jump). The essential step

here is to evaluate that if the neighbors of the patching point

involve PC relative information. If the neighbor code line does

not involve PC relative information and is 4-byte length, we

choose it as the new patching point. In this case, opcodes

of the neighbor instructions b and ldr vary with the current

position address (b and ldr are PC-relative addressing). Thus

it is infeasible to rewrite them. As a result, EMBROIDERY

expands the range of searching area and it finally chooses the

add.w instruction as the new patching point.

B. Kernel Dynamic Memory Rewriting

There are two main stages in applying patches for kernel

vulnerabilities in EMBROIDERY system. The first step is to

obtain an executable memory region to place the patching

code, and the next is to rewrite the patching point to link

the patching code. These steps both involve kernel code

modification.

1) Kernel Code Modification: As Section II discussed,

kernel code modification is in conflict with the kernel memory

protection feature READ-ONLY KERNEL TEXT/DATA which

makes the kernel text segment read-only. EMBROIDERY elab-

orately resets the kernel page tables and refreshes the permis-

sion to guarantee that the modification would not trigger a

violation and crash the system.

READ-ONLY KERNEL TEXT/DATA features can be imple-

mented in two ways. For CONFIG DEBUG RODATA (kernel

3.18+), all the section entries that overlap the kernel text

section are replaced with page mappings. For obsolete Android

devices (OS < 6.0), page-mapping is a two-level mapping.

Each active entry in the Page Global Directory (PGD) table

points to a page frame containing an array of Page Middle

Directory (PMD) entries of type pmd t, which in turn points

to the page frames containing Page Table Entries (PTE) of type

pte t. And PTE points to the page frames containing the actual

user data and holds the relevant protection flags [15]. As for

CONFIG STRICT MEMORY RWX, the kernel page mapping

uses the section mapping, which is a one-level mapping, and

the protection flags are just stored in the relevant locations.

Thus, according to the differently configured page mapping,

EMBROIDERY resets the protection flags to modify the page

rwx attributes.

EMBROIDERY firstly locates the kernel page table. At the

hardware level, ARM supports two page table trees simultane-

ously with the hardware registers TTBR0 and TTBR1. TTBR0
is unique per-process, and is stored in current→mm.pgd
(i.e., current→mm.pgd == TTBR0 for that process). When

a context switch occurs, the kernel sets TTBR0 with the

current→mm.pgd of the new process. On the other hand,

TTBR1 is global for the whole system, and points to the page

tables of the kernel. It is referred in the global kernel variable

swapper pg dir, which is statically initialized at compile time.

Almost all the obsolete Android devices (OS version < 6.0)

install 32-bit kernel, in which the 0-0xBFFFFFFF area

belongs to user space while the 0xC0000000-0xFFFFFFFF
area belongs to kernel space. The swapper page is usually lo-

cated at address 0xC0004000-0xC0008000, and the swap-
per pg dir is usually 0xC0004000. As for the rest devices,

EMBROIDERY locates it by finding the idle process (PID = 0),

whose mm.pgd always points to the swapper pg dir. Thus,

EMBROIDERY locates the kernel page table by leveraging the

information of swapper pg dir.

However, modifying the kernel page table is not enough

to make the page attributes take effect in reality. Actually,

every process has a copy of this master page table for entries

between 0xC0000000 and 0xFFFFFFFF. The above step

only modifies the kernel page table’s attributes. If EMBROI-

DERY overwrites the kernel text segment immediately after

modifying, the system would crash since the kernel still con-

siders the kernel text segment as read-only. In the normal logic

process, kernel flushes the modified page table after page table

rewriting. Overwriting a data pointer to flush tlb all function
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and calling it to flush the modified page table by force seems a

good choice. But our experiment shows that the method does

not work since kernel still regards the kernel text segment

as read-only. One idea is to find the mm struct structure of

itself (the main patching process) and modify the kernel page

table the process refers to (current→mm.pgd) directly. But

as the location of the process is unknown and the patching

process is in user space (cannot call the kernel function and

refer to the current→mm.pgd), it requires a search in a wide

range of memory to find every process’s own kernel page table

and modify all of them (it does not know which the patching

process’s page table is). EMBROIDERY applies a more efficient

method. When a new user process launches, the kernel creates

a new page directory and copies all the kernel mappings from

the swapper page (page frames from 3-4GB) to the new page

table and clears the user pages. Therefore, EMBROIDERY starts

a new process to write the kernel text segment, and the new

process inherits the global kernel page table EMBROIDERY has

already modified. Now EMBROIDERY can modify the kernel

code, and EMBROIDERY would restore the kernel page table

immediately after kernel text segment writing at last.

2) Patching: EMBROIDERY has to prepare an extra exe-

cutable memory region to place patching code. As the kernel

memory has been strictly segmented, it is hard to find such a

suitable region. Allocating a physmap region as the executable

region using ret2dir techniques [16] seems a choice. The

physmap is a large, contiguous virtual memory region inside

kernel address space that contains a direct mapping of part

or all (depending on the architecture) physical memory. But

according to the study of Xu et al. [17] and our experiment,

actually, the physmap region is not executable in ARM.

Besides, the method of modifying page attributes does not

work since it is required to modify all the processes’ kernel

page tables forever in case of a crash, which is a massive

work.

EMBROIDERY utilizes the kernel function vmalloc exec (a

kernel-internal function to allocate enough pages to cover

the page level allocator and map them into contiguous and

executable kernel virtual space [18]) to allocate an executable

memory region. The process is depicted in Figure 3. Firstly

EMBROIDERY needs to place the calling vmalloc exec code

in an existing executable region. The executable region is

required to be seldom used in case of process crash and could

be triggered in the user space. What’s more, after the calling,

EMBROIDERY should obtain the address of the allocated mem-

ory region. Considering all these conditions, EMBROIDERY

overwrites a seldom used system call with the shellcode to

invoke vmalloc exec. EMBROIDERY triggers the system call,

and the shellcode is executed to allocate an executable kernel

memory region. The allocated memory address is obtained

as the system call’s return result. EMBROIDERY restores the

system call and kernel page table. Then EMBROIDERY places

the generated patches in this allocated memory region and

rewrites the patching point. Thus, EMBROIDERY implements

the kernel dynamic memory patching work.

C. Framework Static Objects Rewriting

For framework vulnerabilities, EMBROIDERY applies static

object rewriting and replacing method. In a word, EMBROI-

DERY adds a text segment in the original shared objects, inserts

patching code in that new segment, and links the patching code

to the existing code. EMBROIDERY firstly checks the shared

object and calculates a suitable start address of the new text

segment. It modifies the header of the shared object to generate

a new text segment according to the ELF format [19] [20].

An object file’s section header table stores all the locations

of the sections, and the ELF header’s e shoff member gives

the byte offset from the beginning of the file to the section

header table, while e phoff member holds the program header

table’s file offset in bytes, etc. EMBROIDERY adjusts these

arguments to insert a new text segment. Then it adds the new

text segment information by modifying the object’s header.

After the inserting, EMBROIDERY rewrites the patching point

with branch instruction and places the generated patches in the

new segment. Finally, EMBROIDERY replaces the vulnerable

object on the device with the patched one (usually with third-

party recovery).

VI. EVALUATION

In this section, we evaluate EMBROIDERY with different real

world devices which contain multiple vulnerabilities. To check

whether EMBROIDERY can be applied to both kernel and

framework vulnerabilities patching, we test it using two sets of

vulnerabilities that affect most obsolete Android devices. The

first set of vulnerabilities contains two cross-platform Linux
kernel vulnerabilities, CVE-2014-3153 [21] and CVE-2015-

3636 [22], that lead to universal root from Android version

2.3 to 5.x. The second set of vulnerabilities are related to the
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TABLE I
THE SIMILARITY OF parseChunk FUNCTION. “FAILED” MEANS THAT BINDIFF MATCHES THE parseChunk FUNCTION TO ANOTHER

INCORRECT FUNCTION. “1” MEANS THE TWO FUNCTIONS ARE IDENTICAL, WHICH IS IN REGARD TO THEIR INSTRUCTIONS

INSTEAD OF THEIR MEMORY ADDRESSES.

Nexus4 Nexus5 Galaxy Nexus VEBW1D07 meizu Smartisan Samsung S5 Samsung note3

OS version 4.2.2 5.0.1 4.2.2 4.2.2 5.0.1 4.4.4 5.0.0 5.0.0

Nexus4 - 0.38 1 0.49 0.35 0.56 0.30 0.28
Nexus5 0.38 - 0.38 failed 0.82 0.43 failed failed
Galaxy Nexus 1 0.38 - 0.49 0.36 0.56 0.30 0.28
VEBW1D07 0.49 failed 0.49 - failed 0.36 0.42 0.42
meizu 0.35 0.82 0.36 failed - 0.51 failed failed
Smartisan 0.56 0.43 0.56 0.36 0.51 - 0.50 0.48
Samsung S5 0.30 failed 0.30 0.42 failed 0.50 - 0.98
Samsung note3 0.28 failed 0.28 0.42 failed 0.48 0.98 -

Stagefright library [23] in Android framework. The Stagefright

library (/system/lib/libstagefright.so) is used as a back-end

engine for playing various multimedia formats such as MP4

files. Due to the complexity of media format parsing, multiple

vulnerabilities were discovered in this library that allow a

remote attack with a malicious media file to execute arbitrary

code with system privilege on the device. For the first set,

we choose those two CVEs for two main reasons: 1) the

huge amount of influenced Android devices not only made

the patching process a complicated one (our study reveals

that these vulnerabilities still exist in most obsolete Android

devices and can be exploited by attackers), but also lead

to diverse forms of vulnerable code on different devices; 2)

these two CVEs are well-known for their applicability–most

Android devices with vulnerable kernel can be exploited. The

exploits against these two CVEs, known as the “Towelroot”

and the “Ping Pong Root”, were publicly released and can be

used by any attackers. For the second set, we choose them

because of the feature that a single shared library containing

various vulnerabilities, which is a suitable test case for our

evaluation. According to the reports [24] [25] from Google’s

security bulletin and Zimperium, the number of related vul-

nerabilities related to Stagefright is over one hundred that

many manufacturers were in no rush to update older models,

leaving many devices in danger. We believe that those two

sets of vulnerabilities could help evaluate the effectiveness of

EMBROIDERY’s patching.

Targeting obsolete devices, our evaluation chooses nine

Android devices of six different manufacturers. The set of

devices not only include the Google official devices–Galaxy

Nexus (a.k.a. Samsung I9520), Nexus 4, and Nexus 5, but

also include heavily modified devices with installed OS rang-

ing from Android 4.2 to 5.1. Among them, we check two

kernel vulnerabilities (CVE-2014-3153, CVE-2015-3636) and

17 representative vulnerabilities related to the Stagefright

library including CVE-2015-1538, CVE-2015-1539, CVE-

2015-3823, CVE-2015-3824, CVE-2015-3826, CVE-2015-

3827, CVE-2015-3828, CVE-2015-3829, CVE-2015-3864,

CVE-2015-3867, CVE-2015-3868, CVE-2015-3871, CVE-

2015-3876, CVE-2015-6598, CVE-2015-6599, CVE-2015-

6603, and CVE-2015-6604. Before the testing of EMBROI-

DERY, we firstly manually analyzed those devices to check the

detailed implementations of those vulnerabilities. The CVE-

2014-3153 is due to the futex requeue function in kernel

through version 3.14.5 does not ensure that calls have two

different futex addresses, which allows local users to gain

privileges. The CVE-2015-3636 vulnerability is due to the

ping unhash function in net/ipv4/ping.c in the Linux kernel

before version 4.0.3 does not initialize a certain list data

structure during an unhash operation, which allows local users

to gain privileges or cause a denial of service (use-after-

free and system crash) by leveraging the ability to make a

SOCK DGRAM socket system call for the IPPROTO ICMP
or IPPROTO ICMPV6 protocol, and then making a connect

system call after a disconnect. Thus we reverse engineered the

kernel images of those devices to locate them. For Stagefright

vulnerabilities, our location revealed that not every device

contains all 17 vulnerabilities. After manually analyzing, we

found that some vulnerabilities have been fixed in some

devices, or certain functions in the Stagefright shared library

are removed or modified for particular devices and thus some

vulnerabilities do not exist.

The vulnerability detection using EMBROIDERY proves the

accuracy of our proposed system. For all tested devices,

97 concrete CVEs are detected and located in kernel and

framework binaries (91 in framework and 6 in kernel). Par-

ticularly, EMBROIDERY could accurately locate vulnerabilities

with no false positive. In our kernel vulnerabilities locating

test (devices for kernel evaluation are listed in Table II), only

the devices with OS version 4.x contain both CVE-2014-

3153 and CVE-2015-3636, while the devices in 5.x contain

CVE-2015-3636. EMBROIDERY distinguished this accurately.

In the framework vulnerabilities locating test, the situation is

even more sophisticated due to the Android fragmentation

and diversification. EMBROIDERY reported the number of

the Stagefright CVEs located in Table III, which precisely

corresponds to our aforementioned manual analyzing results.

To illustrate the fragmentation and diversification EMBROI-

DERY faces, shared objects on different devices are evalu-

ated using a state-of-the-art binary code similarity evalua-

tion tool Bindiff [26]. We make use of Bindiff to compare

the android::MPEG4Extractor::parseChunk function (1000+

LOC), one commonly used function involving many Stage-

fright bugs (e.g. CVE-2015-3823, CVE-2015-3824, CVE-
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TABLE II
KERNEL DIVERSIFICATION AND FRAGMENTATION

1JIa B0195ZRD4Q VEBW1D07 Nexus4 Nexus5

Android version 5.1 4.2.2 4.2.2 5.0.1

LKM support n y n n
/dev/kmem support y y y y
read-only kernel text/data y n n y
image signing n n n n

TABLE III
THE CVES DETECTED AND PATCHED

Nexus4 Nexus5 Galaxy Nexus VEBW1D07 meizu Smartisan Samsung S5 Samsung note3

OS version 4.2.2 5.0.1 4.2.2 4.2.2 5.0.1 4.4.4 5.0.0 5.0.0

CVEs (Total: 17) 11 13 11 11 13 11 8 13

2015-3827, CVE-2015-3829, CVE-2015-3864) in libstage-
fright.so of each two devices. We set the Google official

devices (Galaxy Nexus, Nexus 4, and Nexus 5) as the template

to verify the distinction of binary code more precisely, BinDiff

works on the abstract structure of an executable, ignoring

the concrete assembly-level instructions in the disassembly.

Every function gets a signature, based on the structure of the

(normalized) flow graph of the function [27]. Table I shows the

similarity of the compared parseChunk function between each

two devices. Here the metric of similarity is a value between

zero and one, indicating how similar two matched functions

are. BinDiff only considers basic blocks, edges and mnemonics

for calculating similarity values. In particular, instructions may

differ in their operands, immediate values and addresses, but

it will still be considered equal if the mnemonics match. [27].

It can be observed in Table I that the library in Android

5.0.1 is obviously distinct from that in other Android versions.

Bindiff even fails to match parseChunk function of Android

5.0.1 to some implementations in other Android versions,

which indicates those shared objects distinctly differ from

each other. And even with the same Android OS version,

the libraries are still distinct with different manufacturers.

Furthermore, most of the devices have less than the 50%

similarity compared with another device, indicating that each

library varies greatly in different manufacturer devices with

different OS versions. The diversification and fragmentation

of kernel objects is similar to that of shared objects, and the

details are not listed in this paper.

Considering those diversifications, our test showed that

EMBROIDERY is still effective to locate the patching point and

patching information with the heuristic matching strategies.

The heuristic matching strategies EMBROIDERY applies helped

normalize the assembly code diversification. And based on

patch details of the corresponding CVE information, EM-

BROIDERY has located all the patching points in all these

97 cases. Our manual verification later demonstrated that the

patching points located by heuristic matching strategies are

all appropriate locations to insert the patching code. With

the ability to adapt to the significant differences presented

in Table I, EMBROIDERY has performed well in locating for

those 19 CVEs on nine different manufacturer devices ranging

from Android 4.2 to 5.1. Besides, for kernel vulnerabilities, as

Section II discussed, different manufacturers apply different

kernel compilation mode and kernel protection mitigation,

which may cause trouble for kernel patching. We choose

devices from different manufacturers ranging from Android

4.2 to 5.1 and investigate the kernel mitigation features they

applied. The investigation result is shown in Table II. In

response, EMBROIDERY performed patching with adaption to

Android fragmentation and memory protection features. All of

the CVEs detected in various devices have been successfully

patched in our evaluation. The results show that the heuristic

vulnerability matching strategy we applied is generic, and

EMBROIDERY can adapt to the Android diversification and

kernel memory protection features independent of devices

differences.

To evaluate the compatibility of EMBROIDERY and make

sure all of the generated patches work stably without affecting

the normal functionality, we validate them from different

aspects. We collect all the publicly revealed exploits and Proof

of Concepts (PoCs) for these CVEs to evaluate the patched

devices. This time the added patching code is executed when

the PoC or exploit triggers the vulnerability, and the control

flow of the function returns with the specific value as expected.

For kernel vulnerabilities, we inserted the dump stack kernel

function into patching code to verify if the code has been

successfully inserted and executed. And we found the stack

trace has been logged in dmesg messages, which means that

the patching code was executed. The results showed that the

heuristic vulnerability matching and page table modification

strategies we applied are generic, and EMBROIDERY conducts

a universal, cross-device kernel patching solution adapting to

kernel memory protection features. For framework vulnera-

bilities, after manually analyzing and evaluating the patched

binary code and the call flow graph it generated, we found that

EMBROIDERY has successfully located the patching points and

patching information, and applied patches to all devices. We

also inserted a logging function into the patches to evaluate
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that if patches have been successfully executed by the program.

Besides PoCs, we also conducted experiments with some

normal MP3 and MP4 files, which also leads the control

flow into the patching code but pass the checks and return

to the normal routine. With the help of the logging function

under a dynamic debugging process, we observed that the

execution flow of the program runs normally. It demonstrates

that the patched shared object works well without affecting the

normal use of devices. Also, we asked volunteers to operate

the patched device for three days and they report no crash. All

of the patched devices worked as usual after our patching.

VII. LIMITATION AND DISCUSSION

The current EMBROIDERY system implementation has some

limitations. For framework vulnerabilities patching, as we

perform binary rewriting, it may be against the static integrity

protection mechanisms (e.g., image signing) some devices

apply. One solution is to do dynamic memory rewriting like

our kernel rewriting method.

For kernel vulnerabilities patching, there are some devices

with /dev/kmem disabled. In such cases, we can combine the

kmem method with the kernel module method. But when the

manufacturer implements memory and page table protection,

both of the methods cannot take effect. For example, Samsung

proposed RKP [28]. RKP ensures that translation tables cannot

be modified by the Normal World through making them read-

only to the Normal World kernel. Hence, the only way for

the kernel to update the translation tables is to request these

updates from RKP. As a result, RKP guarantees that this

interception is non-bypassable. Actually, /dev/kmem combined

with kernel module method can perform the patching work for

most obsolete devices. EMBROIDERY system can be further

improved if there exists a joint effort between the device

manufacturers and the third party patch developers.

VIII. RELATED WORK

Before our work, the most well-known system for An-

droid’s framework vulnerabilities patching is PatchDroid [3].

PatchDroid is based on dynamic, in-memory patching of

running processes. It supports patching of vulnerabilities on

Dalvik bytecode and uses dynamic binary instrumentation to

inject patching code into running processes on Android. The

POLUS [29] system uses the similar solution with Patchdroid

other than it requires access to the source code of the target

application. EMBROIDERY applies a static binary rewriting

based patching on system objects and also demonstrates dy-

namic patching method on kernel vulnerabilities. Compared

with dynamic patching, our static framework patching does

not need to set up a building environment that accommodates

a large assortment of devices. Moreover, it can be applied to

stock or third-party Android ROMs directly.

Another patching scheme [30] leverages Mobile Device

Management (MDM) to push security update without the par-

ticipation of the manufacturers. However, it does not discuss

how to generate patching code if manufacturers do not provide

source code.

Some third-party patch developers also release their own

patches [31] for specific vulnerabilities. They recompile the

source code of Android to generate shared objects without

vulnerabilities, but the released binaries are only available for

specific devices only, while EMBROIDERY can adapt to varied

Android versions in different manufacturers’ devices.

Also, some frameworks have been proposed for vulner-

abilities patching. IntPatch [32] automatically fixes Integer-

Overflow-to-Buffer-Overflow vulnerabilities in C/C++ pro-

grams at compile time. ClearView [33] is a system for au-

tomatically patching errors in deployed software. It works on

stripped Windows x86 binaries without any need for source

code, debugging information, or other external information,

and without human intervention. Here are some recent work

on automatic program repair [34] [35].

For Linux kernel patching, the academia and industry

have proposed some live kernel patching solutions such as

kpatch [36], ksplice [37] and livepatch [38]. They allow users

to apply security patches to a running kernel without rebooting.

Unlike previous hot update systems, Ksplice operates at the

object code layer, which allows it to transform many traditional

source code patches into hot updates with little or no program-

mer involvement. But they also require the kernel source code

and are specified for each vulnerability and device. In addition,

these solutions are not compatible with ARM. If we want to

make them work on ARM, kernel source code modification is

required. Thus they are not conventional solutions.

IX. CONCLUSIONS

In this paper, we discussed the feasibility of locating and

patching critical vulnerabilities in binary executables against

the fragmentation of the Android ecosystem. We designed

and implemented EMBROIDERY, a binary rewriting system to

achieve a generic binary level code patching for most obso-

lete Android devices. EMBROIDERY locates vulnerabilities in

kernel and system framework of the device, and is able to

patch them using both static and dynamic binary rewriting

techniques. EMBROIDERY thoroughly considers many restric-

tions and adopts a universal patching scheme available for

commodity Android products. The evaluation with two sets

of representative Android vulnerabilities demonstrated that

even the diversification of binary executables from different

devices is significant, EMBROIDERY is able to accurately

locate vulnerabilities and generate corresponding patches.
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