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Abstract—Binary code clone detection (or similarity compar-
ison) is a fundamental technique for many important applica-
tions, such as plagiarism detection, malware analysis, software
vulnerability assessment and program comprehension. With the
prevailing of smart and IoT (Internet of Things) devices, more
and more programs are ported from traditional desktop plat-
forms (e.g., IA-32) to ARM and MIPS architectures. It becomes
imperative to detect cloned binary code across architectures.
However, because of incomparable instruction sets of different
architectures as well as alternative compiling configurations, it is
difficult to conduct a binary code clone detection with traditional
syntax- or structure-based methods.

To address, we propose a semantics-based approach to fulfill
the target. We recognize arguments and indirect jump targets of
each binary function, and emulate executions of those functions,
extracting semantic signatures to measure the similarity of
functions. The approach has been implemented in a prototype
system named CACOMPARE to detect cloned binary functions
across architectures and compiling configurations. It supports
comparisons between mainstream architectures (IA-32, ARM and
MIPS) and is able to analyse binaries on the Linux platform.
The experimental results show that CACOMPARE not only is
effective in dealing with binaries of different architectures and
variant compiling configurations, but also improves the accuracy
of binary code clone detection comparing to state-of-the-art
solutions.

Keywords—binary program analysis; code clone detection;
reverse engineering; static analysis;

I. INTRODUCTION

Binary code clone detection (or similarity comparison) is

an important technique which has a variety of applications

in software engineering and security, for example, software

or algorithm plagiarism detection [33], [34], malware fam-

ilies classification [1], [22], known vulnerabilities search-

ing [13], [25] and binary program comprehension [15]. With

the widespread of smart and IoT(Internet of Things) devices,

programs on traditional desktop platforms (e.g., IA-32) are

progressively ported to emerging architectures, such as ARM,

MIPS. Therefor, it becomes necessary to propose solutions to

binary code clone detection across architectures.

However, even for binaries compiled from identical code

base, their representations could be significantly different.

There are two main reasons, which are also the challenges

of binary cloned code detection, leading to the problem. The

first one is the diversity of instruction set architectures (ISA).

Binaries of different ISAs differ in instruction sets, code offsets

and calling conventions. Thus, those binaries are generally

incomparable even though they are compiled from the same

code base. The other one is the structure gaps introduced

by different compiling configurations, including alternative

compilers and compiling options (e.g., optimization levels).

Basing on variant compiling configurations, different strategies

are employed to optimize and generate the resulting binary

code, which bring considerable changes to the structures (e.g.,

function inlining). Therefore, it is difficult or even infeasible

for traditional syntax- or structure-based methods to detect

binary clone code across architectures and compiling config-

urations.

In the literature, it has drawn much attention to de-

tect cloned (or similar) binary code across architectures

and compiling configurations. MULTI-MH [25] leverages in-

put/output values of basic blocks to detect similar code.

DISCOVRE [12] performs graph isomorphism algorithm on

binary code CFG (Control Flow Graph) after filtering candi-

date functions with their syntax features. GENIUS [13] exploits

reduced CFG to search for similar binary code via isomorphic

graph comparison. BINGO [6] compares the similarity of bi-

nary functions with code signatures extracted via n-grams bas-
ing on CFG. However, above solutions all heavily depend on

CFG which could be altered significantly because of different

ISAs or variant compiling configurations. Besides, DISCOVRE

and BINGO introduce filtering strategies to improve efficiency,

which could cause false positives to the contrary. In some

cases, the performance of DISCOVRE is worse than the version

without pre-filtering [13]. Apart from above static approaches,

MOCKINGBIRD [15] provides a dynamic solution to cross-

architecture similar code comparison. Nonetheless, it requires

legal inputs to trigger target functions for comparison, which

is difficult to satisfy in real world situations.

In this paper, we propose CACOMPARE, a semantics-based

system statically detecting binary cloned code across archi-

tectures and compiling configurations, performing on binary

functions compiled from the same code base. Given a list of

template functions and a target binary program , CACOMPARE

aims to find the most similar function in the target program

comparing to each template function. For a binary function (a

template or target function), CACOMPARE firstly recognizes

arguments it consumes and possible indirect jump targets

of its switch statements. Then it unifies representations of

binaries from different architectures with intermediate repre-

sentations (IR) and emulates executions of those binaries to

extract semantic signatures. Lastly, CACOMPARE computes

similarity scores of each template function to every target
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function, returning a list of target functions ranked by the

scores. CACOMPARE solves the problem of different ISAs by

adopting IR so that it is able to perform generic analysis on

binaries across architectures. Additionally, CACOMPARE ex-

tracts semantic signatures of the whole functions by emulating

their executions, not relying on CFG. Thus, it overcomes the

second challenge of structure gaps introduced by compiling

configurations. To show its effectiveness and capacity, we

evaluate CACOMPARE on 9 different utilities, containing more

than 10,000 functions. The experimental results indicate that

CACOMPARE not only is effective to detect binary cloned

code across architectures and compiling configurations, but

also improves the accuracy of detection comparing to state-

of-the-art solutions.

In summary, the contributions of this work are as followed:

• We propose a semantics-based approach to detect binary

cloned code across architectures and compiling configura-

tions. We leverage IR to unify representations of binaries

from various architectures and extract semantic signatures

from the whole functions by emulating their executions,

so that the approach is suitable for cross-architecture

analysis and robust to representation and structure gaps

of binaries.

• We introduce function argument recognition and switch

indirect jump target detection to assist emulating exe-

cutions of functions. Besides, we propose fine-grained

semantic signatures for function-level binary code clone

detection. Normalization strategies are employed as well

to make signatures more general and adaptive for simi-

larity comparison.

• We implement the approach in the prototype system

CACOMPARE, which supports cross-architecture code

clone detection of ELF (Executable and Linkable Format)

files for three mainstream architectures (IA-32, ARM and

MIPS). The experimental results show that CACOMPARE

not only is effective for binary code clone detection

across architectures and compiling configurations, but

also improves the accuracy of detection comparing to

state-of-the-art solutions in scenarios of this paper.

II. OVERVIEW AND BACKGROUND

In this section, we present the overview of CACOMPARE

and introduce the necessary background knowledge for it.

A. System Overview

Given a template function and a target binary program,

CACOMPARE returns a function list of the target program,

ranked by the similarity scores comparing to the template

function. Figure 1 displays the architecture of CACOMPARE.

For each binary function, CACOMPARE firstly pre-processes

the binary code, including disassembling the binary code, gen-

erating CFG (Control Flow Graph), collecting information of

basic blocks and edges in the CFG, etc (Pre-processing). Then

CACOMPARE traverses the CFG to recognize the arguments

needed for the execution (Argument Recognition) and detects

the switch statements of the function, collecting all possible
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Fig. 1: CACOMPARE System Overview

destination addresses of the indirect jumps (Switch Detection).

Meanwhile, it converts binaries into a uniform format with in-

termediate representations (Binary Translation). Next, with the

arguments and switches information, CACOMPARE emulates

executions of the function on the unified representation with

random values as inputs to generate semantic signatures (Sig-

nature Generation). Finally it compares the signature similarity

of each target function to a template function which has passed

the above processes as well, and returns a function list ranked

basing on their similarity scores (Similarity Comparison).
Generally, incomparable instruction sets of different archi-

tectures and structure gaps introduced by variant compiling

configurations are two challenges of cross-architecture binary

cloned code detection. To solve the problem of different

instruction set architectures, CACOMPARE leverages unified

intermediate representations to facilitate cross-architecture

analysis. To overcome the challenges of structural gaps, it

extracts semantic signatures from execution emulation of the

whole function, which avoids relying on syntax or structure

information of binaries.

B. Calling Convention
Calling convention is the scheme for how subroutines re-

ceive arguments from their caller and how they return a result.

It is the basis of Argument Recognition (§III-A).
Figure 2 shows the stack layout of cdecl, the default calling

convention for C programs on IA-32, before and after a

function calling. In Figure 2a, the argument area stores the

arguments required by the callee. The caller fulfills the area

before entering the subroutine, and the stack pointer (SP)

points at the bottom address of the argument area. After

calling (Figure 2b), the return address is saved on the stack.

The callee is responsible for preserving values of registers

and allocating memory for local variables. Therefore, variables

whose addresses are higher than the SP value in Figure 2a are

the arguments of the callee.
Unlike IA-32, which lacks architecture registers, ARM and

MIPS provide core registers (R0-R3 on ARM and $a0-$a3 on

MIPS) for passing arguments to subroutines. If callees take a

small number of arguments, only registers are used to reduce

the overhead of function calling. If the parameter registers have

been used up, the left arguments are passed on the stack, which

is similar to cdecl. However, it does not mean if a function

has arguments on the stack, the parameter registers are all

employed as argument holders because of 64-bit values. For

ARM, only registers of even numbers along with the following

registers (R0, R1 and R2, R3) can hold 64-bit values. For

example,

8989898989898989
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(b) After Calling

Fig. 2: Stack Layout of cdecl Before and After Calling

static uerr_t
getftp (struct url *u, wgint passed_expected_bytes,
wgint *qtyread, wgint restval, ccon *con,
int count, FILE *warc_tmp)

above is the prototype of function getftp from wget 1.15
at ftp.c:245. The type wgint has a length of 64 bits. So the

second argument passed_expected_bytes is not passed

with R1 and R2, but with R2 and R3, and R1 is left unused.

The convention of MIPS requires the first four 32 bits of the

parameter area on the stack are reserved for $a0-$a3 and the

size of a stack frame should be aligned to 8. So parameter

registers may be unused as well to ensure the alignment.

Therefor, arguments of a function can only be recognized

through the consumption of corresponding variables.

III. APPROACH

In this section, we discuss each step of CACOMPARE in

details to explain how it does the preparation and compares

the similarity of function semantic signatures to detect cloned

binary functions.

A. Function Argument Recognition

In this step, CACOMPARE recognizes arguments consumed

by a function, returning the number of parameters and their

positions, including relative offsets if they are passed on the

stack or register numbers if passed by registers. The results

provide input information for signature generation (§III-C).

Algorithm 1 presents the algorithm for function arguments

recognition basing on calling conventions discussed in §II-B.

For each instruction along a path of a function CFG, if it

accesses a stack variable whose address is larger than the initial

stack pointer value (SP value in Figure 2a), the variable is an

argument, and its offset relative to S is recorded (Line 7-10).

Because all the offsets in AS are relative values, the initial

SP value S could be arbitrary. If the instruction accesses

a parameter register which is not defined beforehand, the

register is an argument as well (Line 11-13). The local set

LocReg records the registers which have been written along the

path (Line 20-21), and those registers are impossible to carry

the arguments. For completeness, ECX and EDX of IA-32 are

also treated as parameter registers, because calling conventions

Algorithm 1: Arguments Recognition Algorithm

Input: Initial SP Value S
Input: Parameter Register Set R
Input: Target Function CFG C
Output: Stack Argument Offset Set AS

Output: Register Argument Set AR

1 Algorithm getArgument (S, R, C)
2 St ← S
3 LocReg ← ∅

4 AS ← ∅, AR ← ∅

5 foreach Path P in C do
6 foreach Instruction I along P do
7 if I reads a value from stack then
8 addr ← getReadAddress(I)
9 if addr > S then

10 AS ← AS ∪ {addr − S}
11 else if I reads a register value from R then
12 if R ∈ R AND R �∈ LocReg then
13 AR ← AR ∪R

14 if I modifies SP then
15 St ← modifySP(St)
16 else if I calls a function f then
17 Ct ← getCFG(f )
18 AS

t , A
R
t ← getArgument(St, R, Ct)

19 AR ← AR ∪AR
t \LocReg

20 if I writes a register R then
21 LocReg ← LocReg ∪R

22 return AS , AR

fastcall and thiscall leverage them to pass integral parameters.

During the traversal of the CFG, operations modifying the

stack pointer value would be taken into consideration and the

SP value is updated correspondingly (Line 14-15), because

the stack could be accessed by the frame pointer as well as

the stack pointer. If the instruction calls a function, register

parameters which are unchanged in the caller but used in the

callee are arguments of the caller as well (Line 16-19).

It should be mentioned that the target of Algorithm 1

is not to recover the prototype of a function. Because the

number and type of an argument in the resulting binary

does not follow the definition in the source code strictly. In

the example of getftp (§II-B), although the function only

has 6 arguments in the prototype, the resulting number it

consumes is 9 (1+2+1+2+1+1+1), because 64-bit parameters

are broken up into two 32-bit variables for accessing on 32-bit

architectures.

B. Switch Indirect Branch Targets Detection

A switch is a selection control mechanism allowing the

value of a variable or expression to change the control flow

of program execution via a multiway branch. In this step,

CACOMPARE detects the switch statements and their corre-

sponding destination addresses of binary functions to facilitate

the emulation for signature generation.

Compilers typically generate a jump table (or branch table),

containing a serial list of target addresses for the switch and

an indirect jump leveraging runtime values as offsets to index

9090909090909090
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1 sll $v0, 2 # compute the relative offset
2 la $a0, 0x446A10 # load address (jump table start)
3 addu $v0, $a0, $v0 # address of jump table entry
4 lw $v0, 0($v0) # get the target address
5 jr $v0 # indirect jump to the target
6 or $at, $zero

� �

Fig. 3: Indirect Jump for Switch from wget on MIPS

the jump table. In the literature, accurate targets recognition

of an indirect jump still remains an important issue for binary

analysis. But with the jump table, it is possible to collect

targets of an indirect jump for a switch statement.

To detect indirect jump targets of a switch, CACOMPARE

needs identify jump tables of the binary program firstly, then

matches each jump table to the corresponding indirect jump

in a function. The process of identifying jump tables is based

on the technique proposed by Wang et. al [31]. For 32-bit

architecture, it traverses data sections of the binary program,

and considers the address of a 32-bit value as the first jump

table entry (jump table start) if it is referred to by an instruction

as the operand. Then if a 32-bit value follows a jump table

entry and refers to instructions within the same function, it is

treated as a jump table entry as well.

With jump tables identified, CACOMPARE then finds their

corresponding indirect jumps. For a switch, the jump target is

obtained by the offset relative to the jump table start. So if an

indirect jump serves a switch, an access to the jump table start

would appear beforehand. CACOMPARE traverses each path

of a function CFG. If an instruction refers to a jump table start,

then the following indirect jump is the corresponding one. For

example, Figure 3 displays the process of computation for a

switch target from wget on MIPS. It accessed the jump table

start address (0x446A10) at Line 2. With the relative offset

stored in $v0, the jump table entry address which holds the

target address is computed at Line 3. Finally, the control flow

transfers to the target address with an indirect jump in Line 5.

Thus, the corresponding indirect jump of jump table starting

at 0x446a10 is jr $v0 at Line 5.

C. Semantic Signature Generation

Similar code must have semantically similar execution be-

havior, whereas different code must behave differently [10].

Therefore, for functions compiled from the same code base,

given the same input, they must execute the same path and

generate the same output, even though they are different in

instruction sets or compiled with variant compiling configu-

rations. In this step, CACOMPARE provides functions with

the same random input, then emulates their executions and

records semantic signatures during the emulation for future

comparison.

1) Semantic Signature: Semantic signatures recorded by

CACOMPARE are listed as followed:

• Input and Output Values. Apart from randomly gen-

erated argument values, inputs are consist of data read

from data sections (e.g., .data, .rodata). Output values

include the return value of the function and memory

write values whose written addresses are beyond the

� �
1 bool print_positive (int num){
2 if (num > 0){
3 printf("%d\n", num);
4 return true;
5 }
6 return false;
7 }

� �
� �

8 arg_0 = dword ptr 8
9 sub esp, 28h
10 cmp [esp+28h+arg_0], 0 ; comparison operands
11 jle short loc_8048482 ; condition code: le
12 mov eax, [esp+28h+arg_0]
13 mov [esp+4], eax
14 mov dword ptr [esp], offset format ; "%d\n"
15 call _printf
16 mov eax, 1
17 jmp loc_8048487
18 loc_8048482:
19 mov eax, 0
20 loc_8048487:
21 add esp, 28h
22 retn
� �

Fig. 4: Function Printing Positive Numbers and

Corresponding IA-32 Assembly Code

� �
1 IO 0000beef // input value read at Line 10
2 CC 0000beef 00000000 LE // comparison operands
3 // and condition code
4 // at Line 10, 11
5 IO 0000beef // input value read at Line 12
6 IO 25640a00 // format string "%d\n" at Line 14
7 LC printf // library function call at Line 15
8 IO 00000001 // return value at Line 16

� �

Fig. 5: Signature Sequence of print_positive (num=0xbeef )

range of local stack frame. Inputs and outputs are the

most straightforward features of function behaviors which

indicate semantics of executions. For example, Figure 4

presents a function printing positive numbers and its

corresponding IA-32 assembly code. Argument num is

an input value. If num is positive, offset of the format

string %d\n (Line 3 and 14) in the .rodata section is

an input value as well. Register eax holds the return

value (Line 16 and 19), so it is an output value.

Variables on the local stack frame will be discard when

the function returns. So CACOMPARE would not treat

those local variables as signatures.

• Comparison Operands and Condition Codes. Compar-

ison operands are values which introduce condition tests

in an execution to decide branch targets of the following

conditional jumps. Condition codes are the conditions of

those comparisons test for. Comparison operands reveals

what values for comparing, and the following condition

code informs how to compare. In Figure 4, operand

values of the comparison instruction at Line 10 are the

comparison operands (value of arg_0 and 0) which

corresponds to num and 0 at Line 2. The condition code

LE (less or equal) is obtained from the conditional jump

at Line 11.

Comparison operations convert control dependencies into

data dependencies [30]. When binary functions of the

same code base are provided with the same input, their

execution path must be the same as well. Comparison

9191919191919191



Algorithm 2: Argument Values Distribution for a Function

Input: Random Value Stream List L
Input: Initial Stack Pointer Value S
Input: Sorted Register Number List of Register Arguments LR

Input: Sorted Offsets of Stack Arguments LS

Output: Initial Program State before Emulation P
1 Algorithm argsDistribution (L, S , LR, LS )
2 ArgCnt← 0
3 foreach R in LR do
4 P[R]← L[ArgCnt]
5 ArgCnt← ArgCnt+ 1

6 foreach O in LS do
7 P[S +O]← L[ArgCnt]
8 ArgCnt← ArgCnt+ 1

9 return P

operands and condition codes are the checkpoints along

the path, thus such signatures also reflect the semantics

of one execution.

• Library Function Calls. Library functions records have

been proven to be an effective semantic signature for

code similarity comparison if they are sufficient in num-

ber [10], [32]. So CACOMPARE employs library func-

tion calls as a supplement to above signatures. For the

example in Figure 4, library function _printf would

be recorded if num is positive.

Figure 5 shows the signature sequence of the example

function in Figure 4 when the input value num=0xbeef. The
first column indicates types of the signature entries in a

row (IO: I/O values, CC: comparison operands and condition

codes, LC: library calls).
2) Execution Emulation: The key points of emulation are:

i) Argument Values Distribution that all functions’ parameters

are provided with the same values, and ii) Control Flow

Arrangement that introduces strategies for indirect jumps and

function calling.

• Argument Values Distribution: Before emulation,

CACOMPARE generates a stream of random values. Ac-

cording to arguments information collected in §III-A,

CACOMPARE assigns values of the stream to parame-

ters of each function sequentially. The process is pre-

sented in Algorithm 2. If a function has register param-

eters, CACOMPARE would give values to those registers

first (Line 3-5), then initializes stack argument values

subsequently (Line 6-8). The algorithm is applicable to

fastcall and thiscall of IA-32 as well.

• Control Flow Arrangement: CACOMPARE has ob-

tained knowledge of indirect jump targets of switch

statements in §III-B. When it emulates switch statements,

CACOMPARE always transfers the control flow to the

target of a pre-defined offset (e.g., always branches to

the first case), because jump targets are generated by

input values, the possibility is low that random inputs

can produce a meaningful offsets for a switch jump table.

Besides, compilers generate switch jump table entries

according to the sorted sequence of cases. Thus, it ensures

the same execution path by selecting the target of a fixed

offset. For other indirect jumps and calls with unknown

targets, CACOMPARE just steps over and continues the

emulation.

For library function calls, CACOMPARE ignores their

emulation as well. If a library function has a return

value, CACOMPARE assigns a pre-defined constant to

the return value register according to calling conventions.

Additionally, because the input values are meaningless,

loops and recursions may become infinite. A threshold

is set to limit the times for executions of loops and

recursions.

To enrich the semantic information, if a function is short in

the length of signature sequence, CACOMPARE would emulate

the function for several more times with other random values

in the input stream until its signature length reaches a pre-

defined threshold.

3) Signature Normalization: After the emulation,

CACOMPARE generates a signature sequence for each

function. It then normalizes the signatures considering

the accuracy of comparison. There are two strategies for

normalization:

• Pointer Value Normalization. During the emulation,

addresses in ranges of data and code sections may be

accessed then appear in signatures. However, addresses

of above sections of variant binaries are different. Thus,

values in ranges of those sections are considered as

pointers and normalized into a pointer tag.

• Comparison Boundary Unification. For integer compar-

ison, a ≤ b is equivalent to a < b+ 1. So CACOMPARE

normalizes comparison operands basing on their condi-

tion codes that the less (greater) or equal cases are all

unified to less (greater) than.

D. Signature Comparison

CACOMPARE computes the similarity of two signature

sequences with the Jaccard Index. The formula is as followed:

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| (1)

|A|, |B| is the length of sequence A and B. |A∩B| represents
the length of their Longest Common Subsequence (LCS).

The time complexity of LCS algorithm is O(mn) and could

not be reduced currently. To improve the performance, when

comparing long sequences whose lengths are larger than a

pre-defined threshold, CACOMPARE adopts MinHash [5] to

quickly estimate the Jaccard Index without explicitly comput-

ing the intersection and union sets. MinHash makes a trade-

off between efficiency and accuracy. For CACOMPARE, we

select 400 hash functions to approximate the Jaccard Index.

The expected error is less than 0.05, which is accurate enough

in this scenario.

IV. IMPLEMENTATION

Currently, CACOMPARE supports comparisons between bi-

nary functions from ELF (Executable and Linkable Format)

files of three mainstream architectures: IA-32, ARM and

9292929292929292



MIPS. Next, we introduce several aspects of the implemen-

tation in more details.

A. Function Information Extraction

We leverage IDA Pro v6.6 [7] to disassemble binary

code and extract control flow graphs. Then argument recog-

nition (§III-A) and switch indirect jump targets detec-

tion (§III-B) are completed automatically with IDAPython.
Although the resulting disassembly of IDA Pro is not per-

fect [2], it is sufficient in our scenario.

B. Binary Translation

Representations of binaries from different architectures are

unified with VEX-IR, which is a RISC-like intermediate

representation (IR) defined by Valgrind [24], an open-

source dynamic analysis framework. We employ PyVEX [28],

a Python project providing bindings to VEX-IR, to translate

binaries with its API statically. The resulting VEX statements

are stored in our own data structures, which are used for

signature generation (§III-C).

C. Signature Generation

The random values for emulation input are generated from

the range [−1000, 1000], which is found to be sufficiently

large to avoid collisions and small enough to cover many

possible paths [25]. During emulation, if a function requires

values from undefined addresses, we feed the function with a

pre-defined constant (e.g., 0) to force the continuance of the

process.

D. Similarity Score Computation

Considering the trade-off between accuracy and efficiency,

a threshold is defined for adopting MinHash to compute the

Jaccard Index. If lengths of both signature sequences for

comparison is smaller than that value, then CACOMPARE uses

the LCS algorithm.

As sequence comparison is the most costly process of

CACOMPARE, we propose a pruning strategy to improve the

performance. Each time, before two sequences are compared,

their possible maximum Jaccard Index is computed. If the

value is less than the maximum score of previous comparisons,

the process of these two sequences is skipped. The equation

of possible maximum score is shown as followed:

Jmax(A,B) =
min(|A|, |B|)
max(|A|, |B|) (2)

The Jaccard Index obtains the maximum value if one element

is a subset (subsequence) of the other one.

V. EVALUATION

We conduct empirical experiments to evaluate the effective-

ness and capacity of CACOMPARE. Firstly, binaries compiled

from different architectures are compared. Then, we compute

the similarity scores of binaries compiled with variant compil-

ing configurations. Finally, we compare CACOMPARE to state-

of-the-art solutions and attempt to explain why it outperforms

others.

TABLE I: Object Programs and Projects for Experiments

Program Version Description

busybox 1.25.1
Software providing several stripped-down Unix
tools in a single executable file

convert 6.9.2
Command line interface to the ImageMagick
image editor/converter

curl 7.39
Multi protocols supported data transferor with
URL syntax

lua 5.2.3
Command line scripting parser for lua, a
lightweight scripting language

mutt 1.5.24 Text-based email client for Unix-like systems

openssl 1.0.1p
Toolkit implementing the TLS/SSL protocols
and a cryptography library

puttygen 0.64
Part of PUTTYGEN suit, a tool to generate and
manipulate SSH public and private key pairs

siege 3.0.1 Http load testing and benchmarking utility

wget 1.15
Multi protocols supported file retriever. GNU
command line project

A. Experiment Setup

Table I lists object programs and projects for the evaluation.

We compile them on three architectures: IA-32, ARM and

MIPS, with different compilers (gcc v4.7.3 and clang v3.0)

and variant optimization levels (-O3, -O2 and -O0), generating

overall 72 binaries.

The IA-32 binaries are compiled in Ubuntu 12.04 (i386),

a virtual machine with 2G RAM allocated. ARM and

MIPS binaries are compiled in QEMU emulation environ-

ments, whose systems are Debian 7.0. Analysis processes

are performed in the host system, which is running on an

Intel Core i5-2320 @ 3GHz CPU with 8G DDR3-RAM.

B. Ground Truth

CACOMPARE performs comparisons on stripped binaries.

To verify the accuracy of results, we also compile copies of

those object programs with the -g option to establish ground

truth basing on debug symbols. According to the symbol

names, if the Rank 1 function in the resulting list holding

the same name with the template function, then the match is

correct.

Besides, compilers do function duplication to copy functions

in resulting binaries, which ensure the jump distance from a

caller to its callee is less than the page size (0x1000 bytes

for 32-bit virtual address space). It avoids a page fault when

calling a function to improve code efficiency. As the duplicated

functions are exactly identical, if a match is two duplicated

instances of the same function, it is also considered as a correct

one.

C. Accuracy

For each following experiment, we compare two binary

programs A and B from the same code base. We treat every

function of A as templates and attempt to detect the cor-

responding one in B (the target function). The accuracy is

measured by the ratio of correct matches ranked at 1st in the

resulting function lists basing on the ground truth.

1) Analysis across Architectures: The 9 object programs

are compiled on the three architectures separately, with

gcc v4.7 as the compiler and the optimization option is

-O3. The results are displayed in Figure 6. Except for lua
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(c) ARM vs MIPS

Fig. 6: Results of cross-architecture comparisons. The gray bar represents the number of template functions and the black bar

is the correct match number. Each dot on the dash line specifies the precision of that comparison.

in Figure 6b whose precision is 63.0%, accuracy of other

comparisons are all over 70%. The average precision of

experiments in Figure 6 is 80.1%. The accuracy of IA-32

versus other architectures is 78.0% (81.1% vs ARM and 74.7%

vs MIPS), while the average precision of ARM vs MIPS is

85.3%. Reasons causing more differences from IA-32 binaries

to other architectures are as followed:

• Library Function Inlining. Although the compiler and

optimization level is the same for all binaries, gcc on

IA-32 trends to adopt more radical strategies to opti-

mize code, including inlining library functions, while we

observe that it hardly does so on ARM or MIPS even

though the -O3 option is set. CACOMPARE provides

a pre-defined constant for library function on ARM or

MIPS, but emulates executions of inlined ones for IA-32

binaries. If the following control flow depends on the

result of a library function, the executed paths are then

different, leading to false positives.

• Float Point Processing. For IA-32 binaries in the evalua-

tion, float point numbers are processed with the FPU reg-

ister stack. Operations with the float point stack generate

signature of comparison operands as well, such as check-

ing whether the stack is full or empty. They are noisy

data but distinguishable from other normal comparison

operands, while ARM and MIPS both have specific float

point registers. Thus the results of comparison between

them are better than those compared to IA-32.

• Switch Implementation. Apart from indirect jumps with

branch tables, there also exist other methods to imple-

ment switches, such as binary search. For switches with

indirect jumps, CACOMPARE chooses the specific target

to continue the emulation, while for others, the target

is selected through a set of conditional branches, which

results in different paths of execution. Take OpenSSL as

an example, the ARM and MIPS versions of binaries both

have over 100 switches implemented with indirect jumps,

while the IA-32 binary only has 76 switch instances with

indirect branches. Therefore, the precision of OpenSSL
comparisons in Figure 6a and 6b is 79.8% and 75.2%

separately, but is 87.8% in Figure 6c, better than previous

ones.

2) Analysis across Compiling Configurations: In this sec-

tion, we evaluate the capacity of CACOMPARE detecting

binary functions compiled with different configurations, in-
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(b) -O3 vs -O0

Fig. 7: Results of Different Compiling Configurations on IA-32

cluding variant compilers and optimization options.

In the experiments of different compilers, binaries are com-

piled with gcc v4.7 and clang v3.0, both with optimization

level -O2. For comparisons of variant optimization options,

we only discuss cases of comparisons between -O3 and -O0,
because high optimization levels contain all strategies of lower

ones. Binaries compiled with above two options have the

largest differences than any other pair of optimization levels.

Figure 7 displays the results of different compiling configu-

rations on IA-32. In Figure 7a, the precision of all comparisons

is over 70.0% and its average value is 78.2%. A reason

causes the false positives is the two compilers select differ-

ent instructions to process float point values. GCC chooses

x87 floating-point instructions to assist the processing, while

Clang uses SSE (Streaming SIMD Extensions). The former

solution leverages the float point stack, and the latter one

provides specific float point registers (e.g., XMM0-XMM7).

For comparisons of binaries with different optimization lev-

els, the precision of all cases is over 70.0% as well (Figure 7b).

The average precision is 82.6%. The main reason introducing

false positives is function inlining. For example, function B
is a subroutine of A. In an optimized version of the binary, B
is inlined into A becoming AB. If B is the template function,

the matching of B and AB would fail.

Overall, apart from the function inlining, cases of different

optimization options are simpler than other comparisons which

are faced with various optimization strategies of different

compilers or variant instruction sets. So the performance of

CACOMPARE for optimization differences (average 82.6%) is

better than others (average 78.2% for GCC vs Clang, 78.0%
for IA-32 versus other architectures).Results of different com-

piling configurations on ARM and MIPS is similar to IA-32,

so we omit the analysis of those experiments.

Figure 8 shows the results of comparisons of binaries com-

piled with different optimization options across architectures.

Results of cross-architecture comparisons are also presented

as references. Obviously, the accuracy of the experiments is

lower than former ones. The average precision of comparisons

with ARM_O0 is 77.8% and 67.7% for MIPS_O0. But the

difference is small that the precision of the solid line in

Figure 8a is only 3.3% lower than the dash line on average,

and for MIPS instances in Figure 8b, the average difference

is 7.0%.

D. Efficiency

As described in §III-D, because of the adoption of MinHash,

the process of signature comparison, which is the most costly

process of CACOMPARE, only requires 5.2 seconds on average

for comparison of each template function. For the preparation

processes of CACOMPARE, it takes less than 90 seconds

for each object binary to complete. Taking OpenSSL as an

example, which has the largest number of functions in object

programs (5,780 function on average), the average time of pre-

process along with argument recognition and switch indirect

jump detection is 55.2 seconds. The translation time of an

OpenSSL binary is 32.9 seconds on average.

E. Comparison with State-of-the-Art Solutions

In this section, we compare CACOMPARE to state-of-the-art

similar binary code comparison solutions from the perspective

of accuracy. In the literature, MULTI-MH [25], GENIUS [13]

and BINGO [6] provide solutions for detecting similar bi-

nary code across architectures. Although the source code is

unavailable, those solutions are all conducted experiments

on BusyBox / Coreutils and OpenSSL. So we compare

results of CACOMPARE on those projects to above solutions’

with the same settings.

MULTI-MH ranks 32.4% of functions in BusyBox (ARM

vs x86) at Rank 1, while the precision of CACOMPARE is

83.4%. Besides, MULTI-MH obtains the precision of 32.1%

for OpenSSL (ARM vs MIPS), and that of CACOMPARE is

87.8%.

GENIUS randomly selects 1,000 functions from BusyBox,
OpenSSL and Coreutils as the dataset, which are com-

piled by GCC and Clang with O0-O3. Finally, it ranks 27%
of the functions at top 1, whereas the average precision of all
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Fig. 8: Results of Different Optimization Levels across Architectures

comparisons performed by CACOMPARE on BusyBox and

OpenSSL is 76.9%. Coreutils provides basic utilities of

the GNU operating system. It is similar to BusyBox but much

smaller in size (Coreutils has around 250 functions while

BusyBox has more than 2,000). So the results of Busybox
can be treated as a reference to Coreutils.

BINGO gives the precision of 41.3% for BusyBox across

architectures on average, while it is 79.2% of CACOMPARE.

For comparisons of different compiling configurations, BINGO

ranks 41.5% of the functions at top 1, and CACOMPARE

achieves the precision of 78.7%.

The reason that CACOMPARE outperforms other solutions

is CACOMPARE depends on semantic signatures from function

executions, whereas the others rely heavily on CFG (control

flow graph). MULTI-MH leverages CFG to compute the

similarity of basic blocks. GENIUS directly uses reduced CFG

to detect isomorphic graphs. BINGO extracts code signatures

basing on n-grams of CFG. However, CFGs of binaries from

the same source code could be different because of differ-

ent instruction sets. For example, on IA-32, there exists an

instruction REP, which repeats a string instruction several

times. To fulfill the same function, a loop structure would

be generated on ARM and MIPS, adding several basic blocks

to the CFG. Besides, optimizations performed by compilers

alters CFG as well, such as function inlining, loop unrolling,

etc. CACOMPARE avoids the representation and structure

gaps introduced by different instruction sets and compiling

configurations. Therefore it is much more robust to above

factors of code transformations.

Additionally, MULTI-MH and BINGO employs read/write

values as a code signature which includes intermediate values

of executions. However, those values cannot be reserved be-

cause of compiler optimization, then they become noise date.

CACOMPARE does not depends on intermediate values during

emulation, but relies on input/output values which are strongly

related to semantics. The problem of noisy intermediate values

also affects BLEX, which is another state-of-the-art solution

for single architecture (x86-64). It detects similar binary code

of Coreutils and ranks 64% of functions at top 1, while the

average precision of all comparisons of Busybox on IA-32

by CACOMPARE is 78.7%.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss remaining challenges and future

work of the system.

A. Obfuscation

CACOMPARE depends on determined valued during the

emulation, so it cannot handle programs implemented with

randomized algorithms. Besides, CACOMPARE is vulnerable

to code obfuscation, especially control flow obfuscation (e.g.,

CFG flattening, opaque predicates), which brings huge side

effects to the signature of comparison operands and conditional

codes. It is an important issue for static analysis as well.

Thus, if a binary to be analyzed is obfuscated, it needs to be

deobfuscated firstly. Papers [14], [29] introduce corresponding

techniques.

B. Signature Sequence Length

CACOMPARE concentrates on the detection of complex

functions which have large numbers of memory accesses, logic

branches and library function callings. Those functions are

also the main targets of compiler optimizations which lead to

structure gaps, whereas for simple functions which may only

have a few instructions, structure transformation is commonly

small. Therefor, it is possible to detect simple functions whose

semantic signature is insufficient with classical methods (e.g.,

leveraging abstract syntax tree [17]).

C. Library Function Inlining

As described in §V-C1, library function inlining may result

in false positives. It is possible to adopt the idea of selective
inlining proposed in [6] which inlines library functions. Firstly,

a database of standard libraries is established, including IR

of library functions and their parameter information. When

a library function is invoked during execution emulation,

CACOMPARE collects the argument values and passes them to
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the corresponding one in the database to generate signatures

and return values.

D. Input Check Bypassing

In some cases, at the beginning of a function, it may check

values of inputs, requiring specific values which are legal

for execution. CACOMPARE provides functions with random

values whose possibility is low to pass the checks, leading to

short lengths of signature sequences. Thus, techniques such

as fuzzing testing [26] needs to be introduced to pass those

checks in the future.

VII. RELATED WORK

A. Code Clone Detection

Cloned (or similar) code sources from the code reuse during

software development. Identifying such code automatically

is helpful for software maintenance (e.g., bug fixing). The

technique of code clone detection is transplanted for other

applications as well, such as malware analysis, program

comprehension, etc. In the last decade, the focus of this

technique migrates gradually from source code to binary, and

the methodologies do from syntax-based to semantic-based.

CCFinder [19] detects cloned source code in large scales

basing on lexical code tokens. CloneDR [4] leverages

AST (Abstract Syntax Tree) to compute the similarity of

cloned code. DECKARD [17] further extracts feature vectors

from AST, improving the efficiency and accuracy of the

detection. Cases of binary code clone detection are more

challenging because of the lack of symbol information. In [27],

Sæbjørnsen et al. propose the first practical code clone detec-

tion algorithm for binary executables. They normalize assem-

bly instructions and model binaries with structural information

to compute the similarity of binaries. Khoo et al. [20] employ

n-grams with graphlets to detect cloned code with structural

matching. In [9], David et al. measure similarity of binaries

with edit distances of their control flow graphs.

As binaries may compiled with different configura-

tions (e.g., variant compilers and optimization levels), there

are huge differences in their representations, even though

they are compiled from the same code base. So detecting

similar binaries is actually the problem of semantic similarity

detection, while above syntax- and structure-based methods

cannot handle such cases. Jhi et al. [16] and Zhang et al. [33]

leverage core values, which are irreplaceable runtime values

of program executions, to detect software plagiarism. Luo et

al. [23] and Zhang et al. [34] exploit symbolic execution to

compare binary code similarity. In [10], Egele et al. propose

Blanket Execution (BLEX) for full code coverage to compare

binary code with memory access and function calling as

features. David et al. [8] employ inputs and outputs of basic

blocks to solve the comparisons of binary functions compiled

with different compilers.

Apart from variant compiling configurations, solutions to

cross-architecture comparisons need to tackle generally in-

comparable instruction sets. In [25], Pewny et al. propose the

first solution to detect known bugs in binaries for different

architectures via code similarity comparison. Afterwards, Es-

chweiler et al. [12] combine the syntax and structure features

of binaries to compare their similarity. Feng et al. [13] continue

the work and improve the efficiency to detect similar binaries

of firmware images with reduced control flow graphs. In [6],

Chandramohan et al. further leverage the technique of selective

inlining to improve the accuracy of detection. Additionally, Hu

et al. [15] run programs to extract code signatures of executed

functions then compare their similarity.

B. Function Prototype Recovery

Function prototype recovery is a classical issue of binary

program analysis. It is widely applied in fields of binary

decompilation, security auditing, binary rewriting, etc. Balakr-

ishnan et al. [3] exploit value set analysis to recovery variables

in executables. Lee et al. [21] reconstruct data types of binary

variables according to how the data is used. In [18], Caballero

et al. identify and extract interfaces of binary functions with

dynamic taint analysis. In [11], the authors not only identify

memory arguments but also propose algorithms to recognize

register arguments. In this paper, it is not necessary to re-

cover function prototypes or argument types. CACOMPARE

identifies parameters consumed by binary functions statically

according to calling conventions of various architectures.

VIII. CONCLUSION

In this paper, we propose a semantics-based approach to

detect binary clone functions and implement it in a prototype

system named CACOMPARE. CACOMPARE first recognizes

arguments and switch indirect jump targets of each function,

then converts the binary into IR and emulates the execution

with random values as input to extract semantic signatures.

Finally, CACOMPARE detects cloned function by computes

similarity of those signatures. The experimental results in-

dicate that CACOMPARE is effective for cross-architecture

and cross-compiling-configuration comparisons of binaries.

Further we show that CACOMPARE outperforms the state-

of-the-art solutions to binary similarity comparison across

architectures.
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