
SIMulation: Demystifying (Insecure) Cellular
Network based One-Tap Authentication Services

Ziyi Zhou
Shanghai Jiao Tong University

Shanghai, China
jou.dzyi@sjtu.edu.cn

Yuhong Nan
Sun Yat-sen University

Guangzhou, China
nanyh@mail.sysu.edu.cn

Xing Han
University of Electronic Science

and Technology of China
Chengdu, China

x5tar@std.uestc.edu.cn

Juanru Li
Shanghai Jiao Tong University

Shanghai, China
jarod@sjtu.edu.cn

Zeyuan Chen
Shanghai Jiao Tong University

Shanghai, China
zechen@sjtu.edu.cn

Dawu Gu
Shanghai Jiao Tong University

Shanghai, China
dwgu@sjtu.edu.cn

Abstract—A recently emerged cellular network based One-Tap
Authentication (OTAuth) scheme allows app users to quickly sign
up or log in to their accounts conveniently: Mobile Network
Operator (MNO) provided tokens instead of user passwords are
used as identity credentials. After conducting a first in-depth
security analysis, however, we have revealed several fundamental
design flaws among popular OTAuth services, which allow an
adversary to easily (1) perform unauthorized login and register
new accounts as the victim, (2) illegally obtain identities of
victims, and (3) interfere OTAuth services of legitimate apps. To
further evaluate the impact of our identified issues, we propose
a pipeline that integrates both static and dynamic analysis. We
examined 1,025/894 Android/iOS apps, each app holding more
than 100 million installations. We confirmed 396/398 Android/iOS
apps are affected. Our research systematically reveals the threats
against OTAuth services. Finally, we provide suggestions on how
to mitigate these threats accordingly.

Index Terms—mobile security, mobile network operator, cel-
lular network, malware, SIM card based authentication

I. INTRODUCTION

Password-less authentication facilitates users especially
those smartphone users disturbed by remembering and in-
putting different passwords for various mobile apps. Recently,
a new type of authentication scheme, cellular network based
One-Tap Authentication (OTAuth in short), has rapidly
emerged. The OTAuth scheme allows smartphone users to log
in an account with just one tap on the screen. In particular,
when a user would like to log in an app with OTAuth
enabled, she simply launches the app and let it automatically
communicate with the Mobile Network Operator (MNO) that
manages the cellular network and distributes the SIM card.
During this process, the phone must use cellular network
instead of a Wi-Fi network. Then the app prompts information
as Figure 1 shows, and the user just needs to click the “Login”
button (marked by the red box in Figure 1) to finish the
authentication and log in to her account.

As a representative instance of Mobile Connect [1], a univer-
sal digital identity service proposed by the Global System for
Mobile Communications Association (GSMA) [2], OTAuth is

(a) China Mobile OTAuth (b) China Unicom OTAuth (c) China Telecom OTAuth

Fig. 1: Examples of OTAuth interfaces in popular apps sup-
ported by different MNOs.

being adopted around the world [3]. Compared with traditional
schemes (e.g., password based or SMS based authentication),
OTAuth significantly simplifies the login process by reducing
more than 15 screen touches and 20 seconds of operation [4],
[5] each time.

More importantly, the use of OTAuth liberates the users
from creating and remembering a large number of login
credentials for multiple apps. While the use of OTAuth eases
the traditional login process, it also gives attackers more
convenience to circumvent user authentication. Intuitively,
the OTAuth process automates many steps of authentication
(e.g., password input) that are originally executed by the user
herself, and it is highly possible that malicious code could
abuse this feature to execute unauthorized behaviors. Unfor-
tunately, we seldom find a corresponding research against
OTAuth despite many recent studies focusing on other login
security issues in mobile apps such as vulnerable Auto-Login
functions [6], weak Push-2FA authentication schemes [7],
insecurely use of Android SMS One-Time Password APIs [8],

and flawed MNO SIM swap services [9]. Therefore, an in-
depth security analysis of the underlying mechanisms in
current OTAuth schemes are expected.
Our work. In this paper, we conducted the first compre-
hensive investigation against OTAuth schemes that are widely
used by mobile apps. Particularly, as instances of this type
of scheme, we focused on world’s top 30 MNOs [10] and
investigated three OTAuth schemes supported by MNOs in
mainland China, namely China Mobile, China Unicom, and
China Telecom. These three MNOs have a total subscription
of more than 1.6 billion [10]. We recovered the design and
implementation details of them by reverse engineering apps
with OTAuth functionality and inspecting the corresponding
SDKs.

We abstracted the OTAuth schemes as a three-phase process
and analyzed its design flaws. We proposed a new attack,
called SIMULATION attack, which exploits a fundamental
design flaw of OTAuth we identified: During the authenti-
cation process, the remote (both MNO and app) servers could
not identify which app starts the authentication if the apps
are on the same smartphone. In SIMULATION attack, an
adversary could easily exploit this design flaw and bypass
the authentication scheme. Our attack only requires a local
malicious app without any privileged permission, or a ma-
licious device that shares the cellular network of the victim
smartphone (e.g., by connecting the Wi-Fi hotspot established
by the victim smartphone). A successful SIMULATION attack
directly leads to unauthorized login of various app accounts of
the victim user, and in many cases could be abused to query
user identities, register new accounts without user consent, and
interfere OTAuth services of legitimate apps.

To fully understand the impact of SIMULATION attack, we
conducted a large-scale measurement against 1,025 Android
apps and 894 iOS apps, all of which are highly popular in the
mobile app market. As of July 2021, each app holds more than
100 million installations. Among these top popular mobile
apps, we identified 396 Android apps and 398 iOS apps were
affected by SIMULATION attack. 17 of these affected apps
have more than 100 million Monthly Active Users (MAU)
and 230 of them have more than 1 million MAU in September
20211.

In addition, our research identified a total number of 22
SDKs (including SDKs provided by MNOs, as well as third-
party agents) that are affected by the SIMULATION attack.
Combining the analysis results of SDKs and apps, we have
also identified several additional implementation weaknesses
that can bring security risks to the OTAuth scheme, such as
insecure token usage, authorization without user consent, and
plain-text storage of sensitive information (see Section IV-D).
Lastly, we provide suggestions on how to mitigate such threats.

In a nutshell, this paper makes the following contributions:
• We uncovered several design and implementation flaws

of a new mobile login scheme, OTAuth, which has a large
usage and high popularity among real-world apps.

1 According to the statistical results of IiMedia Polaris [11].

• Exploiting the flaws of OTAuth scheme, we designed
several attacks in which an adversary can fully bypass
the authentication and perform malicious actions to the
target app.

• We performed a large-scale measurement to evaluate the
impact of these threats. To achieve this, we proposed
a pipeline that integrates both static and dynamic ap-
proaches for effectively detecting potential affected apps.
Our results showed that a large portion of highly popular
apps are vulnerable to the attacks (38.6% for Android
and 44.5% for iOS, respectively).

• We discussed feasible modifications to enhance the secu-
rity of the OTAuth scheme.

Ethical Considerations. The SIMULATION attack related
experiments were conducted using phone numbers and app
accounts of the authors, hence did not affect other users. We
have informed three affected MNOs through CNCERT/CC2 ,
the authority for vulnerability coordination in mainland China.
In the meantime, we provided solutions to help them fix related
issues. CNCERT/CC has verified our findings and related
vulnerabilities were documented under CNVD-2022-04497,
CNVD-2022-04499, and CNVD-2022-05690. All of them are
rated as high severity (scoring 8.3 out of 10 in CVSS 2.0).

II. BACKGROUND

In this section, we introduce the background knowledge
about One-Tap Authentication scheme, including its overview,
the protocol design, as well as the ecosystem of its usage in
mobile apps.

A. One-Tap Authentication (OTAuth) Scheme

One-Tap Authentication is essentially a third-party-based
authentication scheme supported by Mobile Network Oper-
ators, similar to other login options such as Single-Sign-
On [13]. For an app that integrates this service, the user can
log in to her app account with the local phone number of
the device with just one click. Here, the local phone number
specifically refers to the phone number that is bound to the
SIM card on this mobile device. More specifically, as one of
the login options, the app displays the masked local phone
number of the device (e.g., “195******21” in Figure 1(a)).
The user can opt to log in in this way, without typing any
credentials (e.g., username and password), or manually choose
to log in in other ways, such as by interacting with other apps
marked by green boxes in Figure 1 (similar to performing
Single-Sign-On with Google or Facebook). If the local phone
number is not associated with any account, in most cases, the
app will automatically create a new account and bind it to
this local phone number. Compared with other authentication
schemes on mobile platform, such as Single-Sign-On [13],
or SMS One-Time-Password (OTP) [14], OTAuth provides a
much better user experience since it requires significantly less
user interaction. More importantly, OTAuth scheme allows app

2 National Computer Network Emergency Response Technical
Team/Coordination Center of China, the national CERT of China and
responsible for handling severe cyber-security incidents [12].

User Smartphone
with Mobile App

MNO Core
Network System

Shared Root Key
(Pre-stored in
the SIM Card)

Shared Root Key

Secure Connection Established

AKA Procedure

①
App-Specific Data

App Server

Token Generation

<AppID, PhoneNum,
Token>

<Temp Equipment ID,
PhoneNum>

SMC Procedure

③Token
②Token

④ Token

⑤PhoneNum

⑥Auth Result

Temp
Equipment ID

Fig. 2: Key design of the OTAuth Scheme.

developers to pay less fee for user authentication [4], [15],
[16], which provides a strong motivation for developers to
integrate this service.
Key design. The most unique part in this OTAuth scheme
is that the local phone number is obtained neither through
user input nor by requiring any system permissions (i.e.,
READ PHONE STATE or READ PHONE NUMBERS). In-
stead, the local phone number here is obtained based on
the MNO’s capability of recognizing phone number. The
only requirement for this OTAuth scheme is (1) the app has
introduced MNO’s service, and (2) the smartphone has access
to the cellular network.

Figure 2 presents the high-level design of OTAuth services.
Before the OTAuth procedure actually starts, the user’s smart-
phone needs to interact with the MNO Core Network System
to perform the Key Agreement procedure (AKA procedure)

and the Security Mode Control procedure (SMC procedure) for
authentication. The instances of such procedures may vary in
different networks [17]–[19]. After this, the user’s smartphone
and the MNO Core Network System have established a secure
connection based on a shared root key [20].

The OTAuth procedure begins right after the secure con-
nection is established. First, the app on user’s smartphone
sends app-specific data to the MNO server through cellular
network. Since MNO has the capability of recognizing phone
number, the MNO’s server can generate a token that is
associated with this phone number, and transfer it back to the
user’s smartphone. Then, to perform authentication, the user’s
smartphone needs to send this token to the app server. The app
server will forward this token to the MNO server in order to
get the phone number related with this token. In this way, the
app server can know the phone number of user’s smartphone,
and decide whether to allow its login or sign-up request.

B. OTAuth Scheme Details

Figure 3 shows the protocol flow of the OTAuth scheme
step-by-step. The whole process can be divided into three
phases:
(1) Initialize. In this phase, the app first detects whether the
runtime environment supports OTAuth. If this statement is
true, it then tries to obtain the masked local phone number
(not the full local phone number), in order to display it on the
user interface (see Figure 1).

Specifically, the user starts the OTAuth flow by tapping on
the login (or sign-up) button (step 1.1), which actually sends an
OTAuth request to the app. After receiving the user’s request,
the app calls a specific API of the MNO SDK (e.g, the API
loginAuth in the SDK of China Mobile), together with appId
and appKey as the parameters (step 1.2). Here, both appId and
appKey are exclusive to a specific app, which is pre-assigned to

User Smartphone
App

 MNO SDK

App
Server

MNO
Server

Request
token

2.1 Give authorization

appId, appKey
1.2 Ask for initialization

1.3 Request Masked PhoneNum
appId, appKey, appPkgSig

1.4 Response
masked phoneNum, operatorType1.5 Ask for authorization

Interface with masked phoneNum

2.2 Request Token
appId, appKey, appPkgSig

2.3 Response
token2.4 Response

token

3.1 Ask for login/signup
token 3.2 Ask for PhoneNum

appId, token
3.3 Response

phoneNum
approval/rejection to login/signup

3.4 Response

1.1 Request login/signup

Initialize

Obtain
phone

number

Fig. 3: The protocol flow of OTAuth based on MNO’s SDK.

TABLE I: Cellular network based mobile OTAuth services worldwide (ranked by MNO’s total number of subscriptions)

Product / Service∗ MNO Country / Region Business Scenario
Number Identification [21] China Mobile Mainland China Login, Registration

unPassword Identification [22] China Telecom Mainland China Login, Registration
Number Identification [23] China Unicom Mainland China Login, Registration

Operator Attribute Service [24] Vodafone, O2, Three UK Identity verification
Mobile Connect [25] América Móvil Mexico Login, Registration
Mobile Connect [1] Telefónica Spain Spain Login, Registration

ZenKey [26] AT&T, T-Mobile, Verizon America Login, Registration
Fast Login [27] Turkcell Turkey Login

Mobile Connect [28] Mobilink Pakistan Login, Registration

PASS [29], [30] SKT, KT, LG Uplus South Korea Payment
Identity verification

T-Authorization [31] SKT South Korea Login, Registration
Money transfer / Payment verification

Ipification-HK [32] 3 Hong Kong Hongkong China Login, Registration
Ipification-Cambodia [33] Metfone Cambodia Login, Registration

∗ This table demonstrates the prevalence of mobile OTAuth services worldwide but does not imply all of them are vulnerable. In our research, we only
confirmed the first three services [21]–[23] in mainland China are vulnerable for the SIMULATION attack. As of Mar 2022, we have got confirmation
from the ZenKey experts, who told us that ZenKey for AT&T is not subject to this vulnerability as its authentication flow is different.

app developers by the MNO SDK vendor. The MNO SDK then
collects the fingerprint of the signing certificate [34] inside its
hosted app (i.e., appPkgSig), through the API getPackageInfo
and sends it to the MNO server, together with the appId and
appKey (step 1.3).

Since MNO has the capability of recognizing phone number,
the MNO server already knows the phone number (i.e., pho-
neNum) after receiving the request data. Thus, after confirming
that the appId, appKey and appPkgSig are legitimate, the MNO
server returns the user’s masked phoneNum to the MNO SDK,
together with the operatorType (e.g., CM for China Mobile,
CU for China Unicom, CT for China Telecom) to facilitate
the app’s display (step 1.4). Lastly, the MNO SDK pulls up
an interface (like the ones shown in Figure 1) and asks for
user’s authorization (step 1.5). Here, the authorization refers
to whether the user allows the app to obtain the phoneNum.
(2) Request token. In this phase, the app client obtains
a token, which is associated with the appId, appKey and
the phoneNum. With this token, the app server can learn
the phoneNum in the next phase. If the user approves the
obtainment of local phone number (step 2.1), MNO’s SDK
will send the appId, appKey and appPkgSig to the MNO server
through cellular network again, in request for the token (step
2.2). After the appId, appKey and appPkgSig get verified, the
MNO server will generate a token and send it back in response
(step 2.3 and 2.4).
(3) Obtain phone number. In this phase, the app server will
obtain the user’s phoneNum and decide whether to approve
the user’s login or sign-up request based on this. First, the
app client will send the token to the app server in request
for login or sign-up (step 3.1). After receiving the token,
the app server will send it to MNO server in exchange
for the phoneNum (step 3.2). After confirming that the app
server’s IP is legitimate (i.e., has been filed) and that the token
and appId are corresponding, the MNO server will respond
the phoneNum to the app server (step 3.3). Based on the
phoneNum, the app server can decide whether to approve or
reject the app client’s request (step 3.4).

C. OTAuth Ecosystem in Mobile Apps

Given the huge convenience of OTAuth schemes, many
popular mobile apps have fully integrated this service. Some
of them even set OTAuth login as the default login option.
Based on a recent report from China Mobile (the largest MNO
in China) [35], as of October 2021, its OTAuth service has
been called more than 1.69 trillion times.

There are two ways for an app to introduce MNO’s service.
The app can either integrate the SDK developed by MNO,
or integrate a third-party SDK that includes functions of all
MNOs’ SDKs. In mainland China, there are three MNOs:
China Mobile, China Unicom, and China Telecom. Note that
SDKs of all the three MNOs support authenticating through an
arbitrary operator. For example, an app could utilize the SDK
developed by China Mobile to seamlessly supports OTAuth
services of the other two MNOs (e.g., China Unicom) as well.

Other than the official SDKs made by MNOs, there are
various third-party SDKs that support OTAuth as well. These
SDKs typically integrate MNO’s SDKs and provide easier-
to-use APIs for app developers to integrate. Such SDKs also
include other authentication functions as a syndicator, such as
authentication based on SMS One-Time-Password.

D. Scope of Our Study

In this paper, we focus on the OTAuth scheme. Particularly,
as instances of this authentication scheme, our research looked
into the OTAuth services provided by all the three MNOs in
mainland China. Table I presents a list of OTAuth services
we have found in different countries and regions. While there
are similar OTAuth services in other countries and regions,
they are not included in this study, due to the following
reasons. Firstly, due to locality constrain, it is difficult for us to
obtain the real SIM cards and perform the testing for OTAuth
services in other regions. Secondly, unlike the OTAuth services
deployed in mainland China, the OTAuth services provided in
some other countries have not yet been widely deployed by
app developers [3]. We envisioned our analysis and findings
could bring insights for securing similar OTAuth services in

other countries and regions. For example, our preliminary
investigation showed that the Fast Login [27] developed by
Turkcell (the largest MNO in Turkey) is similar to the OTAuth
schemes of three MNOs in mainland China.

In addition, previous works [36] have discussed related
issues under quite different assumptions (e.g., assuming the
attacker has physical access to the victim’s SIM card and
can perform side-channel power analysis) and these problems
do not belong to the scope of the SIMULATION attack we
proposed.

III. EXPLOITING OTAUTH SCHEMES

In this section, we show how to perform a SIMULATION
attack by exploiting a critical design flaw in such OTAuth
schemes. We first illustrate our attack model. Then, we present
the core idea of the attack as well as its implementation details.

A. Attack Model

We assume the adversary can perform the attack under
either of the following two scenarios (shown in Figure 5).
In the first scenario, we assume the attacker can install an
innocent looking malicious app to the victim device. Here, the
malicious app does not need to require any sensitive permis-
sions other than the INTERNET permission. Note that since
the INTERNET permission is widely used by a large portion
of normal apps for app-server communication nowadays, this
permission can be easily obtained from the victim user. This
assumption is aligned with many previous works that perform
attacks on mobile platforms [7], [8]. In the second scenario, we
assume the attacker is within the same network as the victim’s
device. This typically happens when the adversary connects
to the hotspot shared by the victim’s device. We consider this
scenario is more likely to happen in an attack that targets a
specific individual. For example, the adversary is a colleague
of the target victim in the same company, and the adversary
aims at logging in to the victim’s account and stealing sensitive
information.

The key point here for the above two scenarios is that we
assume the adversary can perform her actions under the same
cellular network IP address as the victim, for communicating
with the MNO server (see section III-D for more details).

In the meantime, we assume that the victim is under the
legitimate usage scenario of OTAuth provided by MNOs.
Specifically, there is a SIM card on the victim’s smartphone
and the Mobile Data switch has been turned on. Note that
since the OTAuth scheme only takes the cellar network as the
authentication channel, our attack can succeed regardless of
whether the victim phone’s WLAN switch has been turned
on.

B. Attack Overview

Our research identified that, due to a fundamental design
flaw in the OTAuth scheme, the MNO server cannot effectively
validate whether the authentication request is sent from a
legitimate client or a malicious one. Therefore, under certain
scenarios, an attacker can easily obtain the authentication

token that is associated with the victim’s phone number. With
this token, the attacker can log in to the victim’s account on
the attacker’s own smartphone.
Root cause. The root cause of the flaw is the app’s incapa-
bility of securely using mobile device identity. The operating
system does not participate in the design architecture of
OTAuth. Such a flawed design makes the MNO server unable
to distinguish different apps on the same device, which makes
the SIMULATION attack possible.

As mentioned earlier in Section II-B, the MNO server
verifies the app client via three factors, namely, the appId,
appKey and appPkgSig. Unfortunately, all such information
are not confidential and can be easily obtained by an attacker.
From the MNO server’s perspective, there is no way to
effectively identify whether the one requesting token is indeed
a legitimate one. More specifically, if the attacker makes the
authentication request under the same network environment
(i.e., via a malicious app on the victim device, or connecting
to the victim’s hotspot), the MNO server will always return
the valid token since the authentication factors it received are
indeed correct.
Impacts. Exploiting this design flaw, the attacker can bypass
the app’s authentication and log in to the victim’s account.
In other words, the attacker can remotely log in to the
victim’s account through an app client (on her own device)
and continue to perform malicious actions. When the victim’s
phone number is not bound to any account, the attacker can
register new accounts on behalf of the victim. In addition, the
attacker can also easily obtain the victim’s phone number (e.g.,
log in a specific app that displays the phone number on the
app’s user-profile page).

C. Attack Details

We divide the whole attack process into three phases, as de-
scribed in Figure 4. Here, the appId, appKey and appPkgSig
are specific to the affected victim app; phoneNumA and
phoneNumV refer to the attacker’s local phone number and
the victim’s local phone number, respectively; tokenA and
tokenV refer to the valid token distributed to the attacker and
the victim by the MNO server, respectively.
(1) Token stealing phase. In this phase, the attacker launches
the malicious app to obtain a tokenV . Specifically, the attacker
“simulates” the behavior of the MNO SDK and sends the
appId, appKey, and appPkgSig to the MNO server (step
1.1 and 1.3). As mentioned earlier, these three pieces of data
are not confidential and can be obtained through various ways
in advance. For example, many app developers hard-code the
appId and appKey in the source code of their distributed
apps, which can be trivially recovered via reverse engineering.
The appPkgSig can be obtained by Keytool [37] when the
app (i.e., the APK file) is given. In addition, the attacker can
also intercept the network traffic of the legitimate OTAuth
scheme (e.g., on her own device) and obtain these information.
(2) Legitimate initialization phase. In this phase, the attacker
performs the normal OTAuth process of the victim app on her
own smartphone (step 2.1 to 2.7). This is because the attacker

Victim's
Smartphone
Malicious App

Victim App
Server

MNO
Server

Attacker's
Smartphone

Victim App

Attacker

Token
Stealing
Phase

Legitimate
Initialization

Phase

Token
Replacement

Phase

1.2 Response
masked phoneNumV

1.4 Response
tokenV1.5 Send Token

tokenV

2.2 Request Masked PhoneNum
appId, appKey, appPkgSig

1.3 Request Token
appId, appKey, appPkgSig

2.3 Response

Interface with masked phoneNumA

2.6 Request Token
appId, appKey, appPkgSig

2.4 Ask for authorization

2.7 Response

3.1 Ask for login/signup 3.2 Ask for login/signup
tokenV 3.3 Ask for PhoneNum

3.4 Response
3.5 Response

approval to login/signup with phoneNumV

2.1 Request login/signup

2.5 Give authorization

masked phoneNumA

tokenA

tokenV

phoneNumV

1.1 Request Masked PhoneNum
appId, appKey, appPkgSig

tokenA

Fig. 4: The attack model against OTAuth scheme.

needs to launch a legitimate app client to communicate with
the victim app’s back-end server for her (future) unautho-
rized login. Note that, since the operations in this stage are
performed entirely on the attacker’s smartphone, the attacker
has complete control over the entire process. Therefore, the
attacker has the ability to initialize the authentication, and in
the meantime, prevent the app client from sending tokenA

to the app’s back-end server. More specifically, the attacker
can use the hooking technique [38] to intercept and block the
legitimate authentication process. The tokenA will be further
replaced by tokenV for the upcoming authentication scheme.
(3) Token replacement phase. In this phase, the attacker
bypasses the authentication of the app’s backend server by re-
placing the tokenA with the previously obtained tokenV (step
3.1 and 3.2). Since the tokenV is a valid token associated with
the appId (exclusive to victim app) and the phoneNumV , the
app’s back-end server will get the phoneNumV when it tries
to exchange the received tokenV for a phone number (step
3.3 and 3.4). In this case, the app’s backend server mistakenly

treats the attacker as the holder of the phoneNumV and
approves the login (sign-up) request on the attacker’s device.

D. Attack Implementation

Attack via a malicious app. The overall process of this
type of attack is shown in Figure 5(a). In this attack, with the
installed malicious app, the attacker can obtain the victim’s
token by sending app-specific data through the victim’s mobile
network. As an instance of this attack, we take Kuaishou [39],
Chinese version of Kwai [40] and one of the most pop-
ular short video apps with more than 400 million active
users [41], as the target app for exploitation. We implemented
the malicious app and hard-coded the appId, appKey and
appPkgSig of Kuaishou in it. We uploaded the malicious app
to VirusTotal [42] on April 6 in 2022 and VirusTotal reported
that “No security vendors flagged this file as malicious”. To
perform the attack, we installed the malicious app on a non-
rooted Nokia X5 phone (as the victim’s device) with Android 9
OS. The app installation process does not trigger any security

1

appId
appKey

appPkgSig

2
tokenV

4
5

3

6
7

Login/Sign-up
Approval

Victim's
Smartphone

Malicious
App

Victim
App Attacker's

SmartphonetokenV

tokenA

appId
appKey

appPkgSig

tokenV

App Server

MNO Server

(a) Attack via a malicious app.

2

appId

appKey

appPkgSig
3

tokenV

MNO Server
5

6

4

Victim's
Smartphone

1

App Server

7 8

Login/Sign-up
Approval

Victim's hotspot

Attacker's
Smartphone

appId, appKey, appPkgSig

tokenV

tokenV

appId

appKey

appPkgSig

Victim App

tokenV

Malicious App

(b) Attack by connecting to victim’s hotspot.

Fig. 5: Two attack scenarios against OTAuth scheme implemented by our research.

alert by the system. The entire token obtainment process does
not require any interaction from the victim user, and will not
cause any detectable phenomena (e.g., popping up permission
requests or risk warnings). Lastly, we complete the attack by
hooking and replacing the token sent by a genuine app on the
attacker’s device (tampering with the app). The demo video of
this attack is presented in https://simulation.code-analysis.org.
Attack by connecting to the victim’s hotspot. The main pro-
cess of attacking through hotspot connection is very similar to
the previous attack we have presented, as shown in Figure 5(b).
In this scenario, we assume that the attacker can connect his
own smartphone to the mobile hotspot of the victim’s mobile
phone. Thus, the attacker can send app-specific data to the
MNO server through victim’s cellular network. The attacker
follows the same subsequent steps as the previous attack,
and can successfully bypass the authentication scheme on the
attack device side.

Note that in this attack, the OTAuth SDK checks the
network status of the smartphone (e.g., checks the Operator
Type of the device) and may expose that the attacker’s
device has a different cellular network status as the victim.
However, this check can be easily bypassed since the attacker
has full control over the system of the attacker’s device.
More specifically, since this check is implemented by the
SDK through specific methods (e.g., android.net.Connectivity-
Manager.getActiveNetworkInfo, android.telephony.Telephony-
Manager.getSimOperator), we overloaded the corresponding
methods to explicitly return true statements every time the
check is performed. A demo video of this type of attack
against the Sina Weibo app [43] (the most popular micro-
blogging app in China, similar to Twitter) is also posted online
(https://simulation.code-analysis.org).

IV. LARGE-SCALE MEASUREMENT STUDY

To better understand how real-world apps are affected by the
issues identified above, we perform a large-scale measurement
over a set of popular Android and iOS apps. Our results
show a large portion of highly popular apps confirmed to be
vulnerable due to the integration of such OTAuth Scheme.

A. Dataset

Our final dataset includes a total number of 1,025 Android
apps and 894 iOS apps. These apps were downloaded be-
tween July 19, 2021 and November 20, 2021. As most app
stores explicitly prohibit any form of automated app info
collection [44] [45], we referred to Qimai Data [46], a third-
party mobile app data analysis platform to help label the most
popular apps.
Android app set. To build the Android app set, we first
identified an app list containing 15,668 apps based on the
17 unique app categories provided by Huawei App Store [47]
(i.e., top 1,000 apps for each category). Further, based on the
download statistics collected from Qimai Data, we selected
all those apps with more than 100 million downloads. Note
that users in mainland China rarely use Google Play as their
source for app downloading, and Huawei App Store is one of

the most popular markets instead. As a result, apps collected
from this source can represent well the prevalence of OTAuth
SDK usage in Chinese markets. We consider such a dataset can
sufficiently cover a wide range of highly popular app across
different categories.
iOS app set. Since Apple does not reveal the number of
downloads for each app in its App Store [48], we collected iOS
apps by referring to our Android app set. The correspondence
between the Android and iOS versions of an app is provided
by Qimai Data [46]. We used a jailbroken iPhone 7 plus (with
iOS 13.4.1) to manually install the corresponding apps and
dumped their binary executables using flexdecrypt [49]. In this
way, we finally collected 894 iOS apps corresponding to our
Android app set. Note that since not every Android app in our
data set has an iOS counterpart, the total number of apps in
this dataset is not identical to the Android app set.

B. Measurement Approach

TABLE II: API signatures collected from the three MNO
OTAuth SDKs

MNO API signature
A

nd
ro

id
CM com.cmic.sso.sdk.auth.AuthnHelper

CU com.unicom.xiaowo.account.shield.UniAccountHelper
com.unicom.xiaowo.account.shieldjy.UniAccountHelper

CT

cn.com.chinatelecom.account.sdk.CtAuth
cn.com.chinatelecom.account.api.CtAuth
cn.com.chinatelecom.gateway.lib.CtAuth
cn.com.chinatelecom.account.lib.auth.CtAuth

iO
S

CM “https://wap.cmpassport.com/resources/html/contract.html”

CU “https://opencloud.wostore.cn/authz/resource/html
/disclaimer.html?fromsdk=true”

CT “https://e.189.cn/sdk/agreement/detail.do”

“CM”, “CU”, and “CT” refer to China Mobile, China Unicom, and China
Telecom respectively.

Challenges in automatic detection. To identify those vul-
nerable apps in our Android app set, a naive approach could
be statically checking whether there are certain MNO SDK
signatures in the decompiled app code. For example, such
signatures could be a unique string that contains the package
name and class name in the SDK. However, our preliminary
analysis showed this mechanism is far from satisfying. Specif-
ically, using the signatures collected from the three MNO
OTAuth SDKs (see the list presented in Table II), we only
located 271 out of 1,025 (around 26%) apps from our Android
app set, a much lower percentage than what we observed.
Our further manual inspection showed there are a number of
reasons causing such a low coverage rate.

• Code obfuscation and app packing. A large number
of apps integrate anti-reverse engineering techniques such
as code obfuscation (e.g., ProGuard [50]) and app pack-
ing [51], [52] for intellectual property protection. Both of
these mechanisms may cause false negatives during SDK
signature detection.

• Third-party SDKs without MNO SDK signatures. It
is also possible that some third-party SDKs implement

https://simulation.code-analysis.org
https://simulation.code-analysis.org

App
Dataset Static

Information
Retrieving

MNO SDKs MNO
Signatures

Third-party
Signatures

Third-party
SDKs

Dynamic
Information
Retrieving

without
signature

with
signature

with signature

Suspicious
Apps

Fig. 6: Overview of our analysis pipeline for identifying
potentially vulnerable apps.

their own app-level logic for service integration, instead
of directly including the MNO OTAuth SDKs. For exam-
ple, for third-party SDKs like U-Verify [53], while they
indeed integrate the MNO OTAuth services, we did not
find any relevant code of MNO OTAuth SDKs from their
decompiled code.

Given the challenges above, in our research, we employ a
mix of static and dynamic analysis mechanisms to more effec-
tively locate those apps that are vulnerable to SIMULATION
attack. Figure 6 shows the overall pipeline of our approach.
Static information retrieving. In the static analysis process,
we searched for SDK signatures from the decompiled app
code with the help of dexlib2 [54] library. If an app contains
a class that matches one of our signatures (e.g., class name
and package name), we consider that this app has integrated
OTAuth service. As mentioned earlier, in addition to the
selected signatures from MNO SDKs, we employ a set of
heuristics to recover other OTAuth related signatures (i.e., the
signature of other third-party SDKs) and include them to the
SDK signature set.

The additional SDKs and signatures other than the MNO
SDKs are collected through the following mechanisms.

• Third-party SDKs’ official website. Some MNOs list
part of the third-party agents they have collaborated with
on their official website (e.g., China Telecom lists their
collaborators on [55]). In addition, we also collect other
third-party agents that are not listed by the MNOs by
active searching. Then, we collect their released SDKs
from their websites and select their signatures.

• Individual apps highlighted by third-party
agents. While some third-party agents do not provide
their SDKs for public download, such SDKs would
typically list specific apps that integrate their services. To
this end, we find their corresponding apps and manually
identify their SDKs as well as the SDK signatures
through reverse engineering such apps.

As a result, with the collected SDK signatures, we can effec-
tively capture more affected apps. Note that our investigation
showed code-obfuscation does not have significant impact on
our analysis. Specifically, both the documentation of MNO
SDKs and third-party SDKs explicitly asked the developers to
not obfuscate the SDK code to ensure its usability, meaning
that the SDK signatures can be preserved well in those apps.

Dynamic information retrieving. For the remaining apps
that were not detected by static analysis, we perform an
additional round of dynamic analysis and inspect whether the
instances of OTAuth related classes (based on the collected
SDK signatures) indeed exist at runtime. More specifically, for
each app, we automatically install and launch the app through
ADB [56]. Then, we use Frida [38] to load the specific classes
in the SDK signatures via ClassLoader. If relevant SDK is not
integrated into the app, then a ClassNotFoundException will be
caught; otherwise, the API class will be loaded successfully,
indicating that the corresponding SDK indeed exists in the
tested app. In this way, we can find more candidate apps that
are missed by the static analysis.

For iOS apps, we statically check whether the decompiled
code contains the previously obtained SDK signatures that are
generic to both Android and iOS. Particularly, here we inspect
the URLs used by the OTAuth protocol since the package
name and class name of the same SDK could be different in
the two platforms. Note that for iOS apps, we do not need
to perform the dynamic analysis since Apple does not allow
apps with packed or obfuscated code to be published in App
Store [48].

While such mechanisms cannot guarantee the reported sus-
picious apps to be indeed vulnerable, the results here provide
a significantly more accurate scope for identifying affected
apps.

C. Results and Findings

Affected Apps. The measurement results of apps are sum-
marized in Table III. In total, among the 1,025 Android apps,
we identified a total number of 396 apps that are affected by
the SIMULATION attack. For the iOS dataset, 398 out of 894
apps are affected.

TABLE III: Overview of app measurement results

Total Detection
Result S S&D Verification

Result P R

Android 1025
suspicious 279 471 TP 396

0.84 0.72FP 75

unsuspicious 746 554 TN 400
FN 154

iOS 894
suspicious 496 \ TP 398

0.80 0.78FP 98

unsuspicious 398 \ TN 287
FN 111

S indicates the result of static retrieving, S&D indicates the result of static and
dynamic retrieving; P and R refer to the precision and the recall respectively.
In the following rows, TP, FP,TN, and FN refer to True Positive, False
Positive, True Negative, and False Negative respectively.

To detail, for Android apps, our static information retrieving
process enables us to locate 279 candidates. The dynamic
information retrieving process helps us to locate 192 additional
candidates. To this end, we have a total number of 471
candidates through the automated analysis process. Lastly, our
manual verification confirmed that 396 out of these 471 apps
are indeed vulnerable to the SIMULATION attack. For iOS
apps, our static analysis located 496 suspicious apps and we
finally confirmed 398 of them are indeed vulnerable. Table IV

lists the most popular vulnerable apps based on the number
of their MAU.

TABLE IV: Identified top apps in the Android and iOS dataset that
have more than 100 million monthly active users (MAU) in September
2021, according to the statistical results of IiMedia Polaris [11].

App Category MAU* App Category MAU*

TikTok short video 578.85 Sina
Weibo

community 311.60

Baidu Input input method 569.46 WiFi Master
Key

Wi-Fi 285.57

Baidu mobile search 474.62 TouTiao comprehensive
information

265.21

Gaode Map map
navigation

465.27 Pinduoduo integrated
platform

237.26

Kuaishou short
video

436.50 Dianping local life 156.63

Baidu Map map
navigation

379.58 DingTalk office
software

143.57

Youku comprehensive
video

367.19 Meitu picture
beautification

139.47

Iqiyi comprehensive
video

350.90 Moji
Weather

weather
calendar

122.61

Kugou
Music

music 321.29

* MAU refers to the amount of Monthly Active Users (in millions).

Compare to the naive solution that only considers statically
retrieving the signatures of MNO SDKs, our mixed static
and dynamic analysis mechanisms significantly improve the
coverage for this task by finding 73.8% (271 v.s. 471) more
suspicious apps for the Android dataset. In addition, our
analysis pipeline also achieves high precision and recall.
Particularly, 84.08% (396/471) and 80.24% (398/496) of the
identified Android and iOS apps are indeed vulnerable re-
spectively, while 72% (396/550) vulnerable Android apps and
78.19% (398/509) vulnerable iOS apps are pointed out by our
analysis pipeline.

Below we discuss the false positives and false negatives
during our automated analysis process. For simplicity, we here
mainly discuss the apps in our Android dataset, and the iOS
dataset follows a similar case.

For the Android dataset, our detection method resulted in 75
false positives. The main reasons for these false positives are as
follows: (1) 5 out of 75 apps suspended user login or sign-up
for various reasons (e.g., under national cyber security review),
thus they will not be affected by the SIMULATION attack
temporarily. (2) While some apps do integrate the OTAuth
SDK, we found they do not actually call any SDK APIs when
the user requests to log in. This may happen when an app
has integrated an SDK supporting the OTAuth feature (e.g.,
Tencent Cloud SDK [57]) but the SDK is actually used by
the app for other features (e.g., login with Tencent WeChat
account). We found that 62 out of 75 apps belong to this
case. (3) For the remaining 8 apps, while supporting OTAuth
login feature, they also adopt additional verification for user
authentication. For example, if the user tries to log in on
a new device, Douyu TV [58] will require SMS One-Time
Password and Codoon [59] will require the full phone number.
We consider such apps are not vulnerable to the SIMULATION
attack.

In terms of false negatives, our approach missed 154 vulner-
able apps. This is mainly because some apps have integrated
more advanced packing techniques to hide the code level
semantics at runtime, making the valid signature undetectable
by our mechanisms. Specifically, we automatically detected
the common packing tool signatures in the 154 apps we missed
and 135 of them are judged to be packed. A manual inspection
of the remaining 19 missed apps showed that they have
implemented more customized packing techniques. Although
false negatives exist, our detection mechanism provides a
concrete lower bound, showing the severity of our identified
issues. Particularly, our detection mechanism showed that at
least 38.63% (396/1025) of the apps in our Android dataset
are vulnerable to the attack.
Affected SDKs. In addition to the three SDKs provided
by the official MNOs, our aforementioned SDK collection
process has identified a total number of 19 third-party SDKs
that integrate such services for app developers. The detailed
information of such SDKs is presented in Table V. Among
them, 8 SDKs are found to exist in our app dataset. Since the
root cause of SIMULATION attack is the insecure design of
the authentication scheme, all our investigated OTAuth SDKs
(the MNO SDKs and third-party SDKs) are vulnerable to the
SIMULATION attack.

TABLE V: Details about third-party OTAuth SDKs covered by our research

Third-party
SDK Publicity1 App

Num
Third-party

SDK Publicity1 App
Num

Shanyan [60] Ë 54 Jiguang [61] Ë 38
GEETEST [62] Ë 25 U-Verify [53] Ë 18

NetEase Yidun [63] Ë 10 MobTech [64] Ë 8
Getui [65] Ë 8 Shareinstall [66] Ë 4

SUBMAIL [67] Ë 0 Jixin [68] é /
Emay [69] Ë 0 Qianfan Cloud [70] é /

Tencent Cloud [57] é / Baidu AI Cloud [71] Ë 0
Up Cloud [72] Ë 0 Santi Cloud [73] Ë 0
Huitong [74] Ë 0 Weiwang [75] Ë 0
DCloud [76] Ë 0

Total Num 163 2

1 Publicity indicates whether the third-party agent has published its OTAuth SDK or
highlighted apps.

2 Two apps integrate GEETEST [62] SDK and Getui [65] SDK at the same time.

Impacts of SIMulation Attacks. According to the statistical
report of CNNIC [77], the total number of mobile internet
users in mainland China has surpassed 1 billion by June 2021
and nearly all of them use services provided by the three
major MNOs. Since OTAuth service is enabled by default,
the SIMULATION attack could potentially affect all users of
the three MNOs. Even worse, according to our observations,
neither the MNOs nor the apps have provided an option that
allows users to disable this login scheme, meaning that it’s
hard to alleviate this threat from the user side.

In the meantime, among the vulnerable apps we have
identified, 17 apps have more than 100 million MAU (shown
in Table IV) and 87 apps have more than 10 million MAU3.
Therefore, if the SIMULATION attack could be conducted on
an arbitrary mobile device (either with Android or iOS), it

3 Based on statistics published by IiMedia Polaris [11].

is very likely that the phone number has been registered to
several popular apps.

In addition to the major design flaw discussed in Section III,
we also discovered several additional issues that lead to extra
unexpected risks. We summarized them as follows:

• User Identity Leakage. The original design of
OTAuth only returns a masked phone number (e.g.,
“186******98”) when receiving the OTAuth request.
This partially leaks the sensitive information of the user
identity. Even worse, we found a further step could be
leveraged to fully disclose the victim’s phone number:
when receiving a valid token, some app servers not only
send it to the MNO server to obtain the phone number
of the user but also respond this phone number to the
user (app). Such an app server can be easily abused as
an oracle to obtain the victim’s phone number. Examples
of affected apps in this case include ESurfing Cloud
Disk [78], a highly popular private cloud storage app
with more than 400 million users.

• OTAuth Service Piggybacking. To use OTAuth service,
developers are required to register their apps and pay
the corresponding fees. However, an app could abuse the
OTAuth service of other registered apps to implement a
free and unauthorized use. Similar to the user identity
leakage cases, once a registered app could be abused as
an oracle to retrieve user’s phone number, the malicious
app easily reuses the appId and appKey of the victim
app to first obtain a token from the MNO server, and
then uses the token to exchange phone number from the
app server. In this way, the malicious app freely uses
the OTAuth service without the permission of both MNO
and app servers. More seriously, we noticed that the use
of OTAuth service is not free. For the legitimate use of
OTAuth, an app needs to pay a certain fee to the MNOs
or third-party agents for each login. For instance, China
Telecom charged a 0.1 RMB (around 0.016 USD) service
fee for each OTAuth [79]. If the OTAuth service of a
legitimate registered app is frequently abused by those
unregistered apps, the legitimate app would suffer from
a lot of unexpected expenses.

• Account Registration without User Awareness. We ob-
served that a large portion of app providers not only
integrated OTAuth services but also simplified their app
account registration and activation processes when a
user uses the OTAuth for the first time: if the used
phone number has not yet been registered to the app
service, it will be automatically registered without any
user involvement. While this automated process facilitates
new users, it actually expands the attack surface of the
SIMULATION attack. Even if a user would not like to
use a certain app, SIMULATION attack could exploit this
(insecure) design to associate her phone number to a
new account. In our research, our manual investigation
confirmed that 390 out of 396 vulnerable Android apps
allow an adversary to register a new account without

any additional information. In other words, for these 390
apps, if the victim’s phone number has not been used for
registration, the attacker can register a new account with
the victim’s phone number.

D. Other Implementation Weaknesses

Our analysis of the identified apps and SDKs also revealed
a set of additional implementation weaknesses of the OTAuth
services, involving both SDK developers and app developers.
Insecure token usage. As an important credential, the use of
token should have been strictly restricted. However, in reality,
some MNO’s restrictions on tokens are not strict enough,
mainly including: (1) Token reuse. In theory, each token should
be invalidated after being sent to MNO server by app server (in
step 3.2 of Figure 3). However, after experiments, we found
that in China Telecom’s OTAuth service, a token can be used
to complete multiple logins within its valid time. In addition,
during the validity period of token, the tokens obtained by
multiple requests of the app client remain unchanged. (2)
Multiple effective tokens. Similar to SMS OTP, there should
be only one valid token at a time. However, in China Unicom’s
OTAuth service, newly obtained token will not invalidate the
older token. (3) Too long validity period. Among the three
MNOs in mainland China, China Mobile, China Unicom and
China Telecom have set token validity period to be 2 minutes,
30 minutes, and 60 minutes, respectively. We believe the latter
two MNOs have set a too long validity period, which brings
risks to security.
Authorization without user consent. OTAuth SDKs require
the app to obtain user’s mobile phone number only after ob-
taining user’s authorization (step 1.5 and step 2.1 of Figure 3).
MNO’s SDKs and third-party SDKs do pop up an interface
(see Figure 1) to ask for user’s authorization. While MNOs
and third-party agents ensure that the interface indeed pops
up (e.g., through resource protection or manual review), we
discovered that some popular real-world apps have retrieved
the token before popping up the interface. With this token,
these apps can easily obtain the user’s phone number without
user’s authorization.
Plain-text storage of sensitive information. According to
the design of MNO, the appId and appKey of an app are
specific and fixed. Through analyzing real-world apps, we
found that many apps have hard-coded their appId and appKey
into program files in plain-text form, which makes it easy for
an attacker to obtain the appId and appKey.

V. MITIGATION

We observed that both the OTAuth SDK vendors and the app
developers have adopted some ineffective strategies to protect
the OTAuth scheme. We summarized and analyzed typical
(insecure) defenses as follows:

• Using app hardening technique to hide appId and
appKey. Many app developers applied app hardening
techniques such as code obfuscation, packing, or anti-
debugging to prevent their apps from being reverse-

engineered. However, such protection cannot fundamen-
tally prevent attackers from retrieving appId and appKey.

• Using appPkgSig to verify the client’s legitimacy. The
MNO server asks the SDK to obtain the appPkgSig of
the app client from the OS, and adds it in request, trying
to identify whether the request is sent from a benign app
client. Unfortunately, attackers could easily replace the
appPkgSig sent by the malicious app client (e.g., through
patching the SDK or impersonating the benign app client
to send network packets).

• Using UI-based confirmation to enforce user’s involve-
ment. The OTAuth SDKs, as we observed, would prompt
the user (as the blue boxes in Figure 1 show) during an
OTAuth process. In addition, an app with OTAuth SDK
must be vetted by MNOs to ensure there exists such a
confirmation before the SDKs are invoked. However, such
a design cannot guarantee that the user really involves in
the OTAuth process, since it needs no user-related input
to construct the login request.

We argue that the failure of the above-mentioned defenses
is they cannot fundamentally prevent an attacker from imper-
sonating a legitimate app. Correspondingly, we proposed the
following countermeasures by adding certain factors that only
a legitimate app and its user could generate:

• Adding user-input data into the login request. The
OTAuth process could require users to provide some
information that is unknown to the attacker (e.g., her full
phone number or her family name). However, this may
raise usability issues and affect the user experience.

• Adding OS-level support. OS has the capability of
dispatching a token to the legitimate app (i.e., the app
with the corresponding package name). Thus, even if a
malicious app can send a login request, it cannot obtain
the token and perform the SIMULATION attack. However,
this may require a deeper cooperation between the OS
vendors and the MNOs.

VI. RELATED WORK

We discuss the related work to our research with the
following two categories, namely, bypassing authentication on
mobile platform, and MNO’s service that is related to mobile
authentication.
Bypassing authentication on mobile platform. Many recent
studies have paid attention to the security risks in authenti-
cation process on mobile platforms. These researches have
achieved similar attacking results to our works, such as log
in to the victim’s account without authorization. The major
difference between these works and ours is that they focus on
different authentication schemes provided by apps, instead of
third-parties (e.g., the MNOs). For example, Song et al. [6]
developed an Android OS-level virtualization platform that
is called VPDroid, to exploit the automatic login feature
implemented by individual apps. Bianchi et al. [80] explored
the unsafe login-less authentication schemes in which distin-
guishing information of user device are used. Lei et al. [8]
revealed the insecurity of SMS-related new APIs provided

by Android systems, and they showed how to abuse such
features to perform user-interaction-free unauthorized login.
Jubur et al. [7] demonstrated the feasibility of bypassing
app’s push-based authentication scheme by triggering human-
indistinguishable notifications. Wang et al. [81], [82] focused
on the security risks of apps that adopted the OAuth-based
authentication schemes.
MNO’s service for mobile authentication. Traditionally,
most Mobile Network Operators provide SMS-based authen-
tication services (i.e., the One-Time Password), which are
widely used by mobile apps. Following this line of topic, there
are a wide range of malwares (e.g., ZitMo [83], SPITMO &
Tatanga MITMO [84], and Crusewind [85]) that target stealing
the SMS message for bypassing the user authentication. In
addition, Enck et al. [86] and Golde [87] conducted research
on abusing SMS to perform DoS attacks. Their research
showed that SMS can be exploited to prevent phone users
from making calls or exhaust the user’s phone balance.

Other than attacks targeting SMS, the SIM Swapping at-
tack [9] exploits MNO’s ability of seamlessly binding a phone
number to a new SIM card, which can further route the
authentication SMS to the attacker. SIM Clone attack allow
attackers to obtain a SIM card, which is almost equivalent to
the victim’s. Liu et al. [36] presented how to copy a 3G/4G
USIM card within 15 minutes through Side-Channel Analysis.
Coletta et al. [88] revealed the risk of personal data leakage
caused by MNO’s self-authentication feature. Specifically, they
studied seven major Italian MNOs and found that attackers
could steal user data (such as phone number, the amount of
phone calls, etc.) by visiting specific web pages.

VII. CONCLUSION

In this paper, we conduct the first in-depth security study on
the Mobile Network Operator based One-Tap Authentication
scheme (MNO-based OTAuth scheme). Our research has iden-
tified several fundamental design flaws in this authentication
scheme. Such design flaws bring severe security implications
to apps that integrate this type of service. For example, an
adversary who bypasses this authentication scheme can gain
full access to the victim’s app account. To further evaluate the
impact of our identified issues to the real world, we performed
a large-scale measurement over a set of top popular apps in
mainland China (including both Android and iOS apps). The
measurement results showed that a large portion of highly
popular apps are affected by this issue. Lastly, we discuss
possible ways to mitigate such threats.

ACKNOWLEDGMENT

We are grateful to our shepherd for his support and
suggestions. This work was partially supported by the Na-
tional Key Research and Development Program of China
(No.2020AAA0107803) and the National Natural Science
Foundation of China (No.62002222). We especially thank Ant
Group for the support of this research within the SJTU-Ant
Security Research Center.

REFERENCES

[1] Telefónica Spain. (2017) Mobile Connect on Mi Mo-
vistar: Improving adoption and usage. [Online]. Available:

https://mobileconnect.io/wp-content/uploads/2019/02/mc-Telefonica-S
pain-Improving-adoption-usage.pdf

[2] GSM Association. (2021) GSMA: Representing the worldwide mobile
communications industry. [Online]. Available: https://www.gsma.com/

[3] GSM Association. (2021) Mobile Connect. [Online]. Available:
https://www.gsma.com/identity/mobile-connect

[4] China Mobile. (2020) Introduction to the One-Tap Login Authentication
Service of China Mobile. [Online]. Available: http://dev.10086.cn/doc
Inside?contentId=10000067529678

[5] China Telecom. (2021) Jingdong app accesses Passwordless
authentication service. [Online]. Available: https://id.189.cn/partn
erCase/detail?type=jd details

[6] W. Song, J. Ming, L. Jiang, H. Yan, Y. Xiang, Y. Chen, J. Fu, and
G. Peng, “App’s auto-login function security testing via android os-
level virtualization,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 2021, pp. 1683–1694.

[7] M. Jubur, P. Shrestha, N. Saxena, and J. Prakash, “Bypassing push-
based second factor and passwordless authentication with human-
indistinguishable notifications,” in Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security, 2021, pp. 447–
461.

[8] Z. Lei, Y. Nan, Y. Fratantonio, and A. Bianchi, “On the insecurity of sms
one-time password messages against local attackers in modern mobile
devices,” in Proceedings of the 2021 Network and Distributed System
Security (NDSS) Symposium, 2021.

[9] K. Lee, B. Kaiser, J. Mayer, and A. Narayanan, “An empirical study
of wireless carrier authentication for {SIM} swaps,” in Sixteenth Sym-
posium on Usable Privacy and Security ({SOUPS} 2020), 2020, pp.
61–79.

[10] Wikipedia. (2021) List of mobile network operators. [Online]. Available:
https://en.wikipedia.org/wiki/List of mobile network operators

[11] IiMedia Polaris Developer Service Platform. (2021) IiMedia Polaris:
the world’s leading mobile network product benchmarking analysis
platform. [Online]. Available: http://bjx.iimedia.cn/app rank

[12] CNCERT/CC. (2021) National Computer Network Emergency Response
Technical Team/Coordination Center of China. [Online]. Available:
https://www.cert.org.cn/publish/english/index.html

[13] J. D. Clercq, “Single sign-on architectures,” in International Conference
on Infrastructure Security. Springer, 2002, pp. 40–58.

[14] S. Ma, R. Feng, J. Li, Y. Liu, S. Nepal, E. Bertino, R. H. Deng,
Z. Ma, and S. Jha, “An empirical study of SMS one-time password
authentication in Android apps,” in Proceedings of the 35th Annual
Computer Security Applications Conference, 2019, pp. 339–354.

[15] China Unicom. (2018) Passwordless Login for Xiaowo Account.
[Online]. Available: https://saas.wostore.cn/saas/manager/userfiles/1/
files/cms/article/%E5%B0%8F%E6%B2%83%E8%B4%A6%E6%88%
B7-%E5%85%8D%E5%AF%86%E7%99%BB%E5%BD%95.pdf

[16] China Telecom. (2021) Industry Cases of China Telecom’s Password-
free login. [Online]. Available: https://id.189.cn/partnerCase/home

[17] 3GPP, “3GPP System Architecture Evolution (SAE); Security
architecture,” 3rd Generation Partnership Project (3GPP), Technical
Specification (TS) 33.401, 12 2021, version 17.0.0. [Online]. Available:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDet
ails.aspx?specificationId=2296

[18] 3GPP, “Security architecture and procedures for 5G System,”
3rd Generation Partnership Project (3GPP), Technical Specification
(TS) 33.501, 01 2022, version 17.4.2. [Online]. Available:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDet
ails.aspx?specificationId=3169

[19] 3GPP, “Non-Access-Stratum (NAS) protocol for Evolved Packet System
(EPS); Stage 3,” 3rd Generation Partnership Project (3GPP), Technical
Specification (TS) 24.301, 01 2022, version 17.5.0. [Online]. Available:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDet
ails.aspx?specificationId=1072

[20] 3GPP, “3G security; Security architecture,” 3rd Generation Partnership
Project (3GPP), Technical Specification (TS) 33.102, 07 2020, version
16.0.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/Sp
ecifications/SpecificationDetails.aspx?specificationId=2262

[21] China Mobile. (2021) China Mobile Internet Capability Opening
Platform. [Online]. Available: http://dev.10086.cn/numIdentific

[22] China Telecom. (2021) Tianyi Account Open Platform. [Online].
Available: https://id.189.cn/banner/unPassword

[23] China Unicom. (2021) China Unicom Communication Innovation
Capability Platform. [Online]. Available: https://onlinebusiness.10010.
com/product/5302?chnl=none

[24] O2, Three & Vodafone. (2017) Mobile Identification goes Live UK.
[Online]. Available: https://mobileconnect.io/wp-content/uploads/2019/
02/mc-Mobile-Identification-goes-Live-UK.pdf

[25] América Móvil. (2016) Increasing usage of Value-Added Services.
[Online]. Available: https://mobileconnect.io/wp-content/uploads/2019/
02/mc-America-Movil-Mexico-Increasing-VAS-usage-2.pdf

[26] ZENKEY LLC. (2021) Documentation, APIs & Portal | ZenKey
Developer. [Online]. Available: https://myzenkey.com/developer/

[27] Turkcell. (2021) What is Fast Login? All About Turkcell Fast Login!
[Online]. Available: https://hizligiris.turkcell.com.tr/en/fast-login/wha
t-is-fast-login

[28] Mobilink. (2016) Success Story: Increasing Registrations on Operator
Services. [Online]. Available: https://mobileconnect.io/wp-content/upl
oads/2019/02/mc-Mobilink-Increasing-reg-operator-services.pdf

[29] ATON Inc. (2019) PASS: Life Innovator Group. [Online]. Available:
http://www.atoncorp.com/aton/en/pass-en/

[30] KT Co., Ltd. (2021) PASS | KT. [Online]. Available: https:
//fido.kt.com/ktauthIntro

[31] SK Telecom Co., Ltd. (2021) SKT ID. [Online]. Available:
https://www.skt-id.co.kr/memberportal/login/main

[32] IPification. (2020) IPification Secure Mobile Authentication
Available to 3 Hong Kong Subscribers. [Online]. Available:
https://www.ipification.com/press/ipification-secure-mobile-authenticat

ion-available-to-3-hong-kong-subscribers
[33] IPification. (2021) IPification: Passwordless, One-Click Mobile

Authentication Partners with Metfone in Cambodia. [Online]. Available:
https://www.ipification.com/press/ipification-passwordless-one-click-m
obile-authentication-partners-with-metfone-in-cambodia

[34] Google Developers. (2021) Sign your app. [Online]. Available:
https://developer.android.com/studio/publish/app-signing

[35] China Mobile. (2021) China Mobile Capability Store. [Online].
Available: https://open.10086.cn/#/capability/14

[36] J. Liu, Y. Yu, F. Standaert, Z. Guo, D. Gu, W. Sun, Y. Ge, and X. Xie,
“Small tweaks do not help: Differential power analysis of milenage
implementations in 3G/4G USIM cards,” in European Symposium on
Research in Computer Security. Springer, 2015, pp. 468–480.

[37] Oracle. (2021) keytool. [Online]. Available: https://docs.oracle.com/ja
vase/8/docs/technotes/tools/unix/keytool.html

[38] Oleavr. (2021) Frida: A world-class dynamic instrumentation
framework. [Online]. Available: https://frida.re/docs/functions/

[39] Kuaishou Technology. (2022) Kuaishou Short Video App. [Online].
Available: https://www.kuaishou.com/

[40] Kuaishou Technology. (2022) Kwai, Fantastic Social Video Network.
[Online]. Available: https://www.kwai.com/

[41] Kuaishou Technology. (2022) Kuaishou Technology Announces
Fourth Quarter and Full Year 2021 Financial Results. [Online].
Available: https://ir.kuaishou.com/news-releases/news-release-details/k
uaishou-technology-announces-fourth-quarter-and-full-year-2021

[42] VirusTotal. (2021) Analyze suspicious files and URLs to detect types
of malware, automatically share them with the security community.
[Online]. Available: https://www.virustotal.com/gui/home/upload

[43] Sina. (2021) SINA English. [Online]. Available: https://english.sina.c
om/weibo/

[44] Apple Inc. (2021) Apple Website Terms of Use. [Online]. Available:
https://www.apple.com/legal/internet-services/terms/site.html

[45] Huawei Device Co., Ltd. (2021) Terms of Use of Huawei
Consumer Business Official Website. [Online]. Available: https:
//consumer.huawei.com/en/legal/terms-of-use/

[46] Beijing Qimai Technology Co., Ltd. (2021) Qimai Data (formerly
ASO100): Professional mobile product business analysis platform.
[Online]. Available: https://www.qimai.cn/

[47] Huawei App Store. (2021) Huawei App Store. [Online]. Available:
https://appstore.huawei.com/

[48] Apple Inc. (2021) App Store. [Online]. Available: https://www.apple.
com/app-store/

[49] JohnCoates. (2021) Flexdecrypt: Decrypt iOS Apps and Mach-O
binaries. [Online]. Available: https://github.com/JohnCoates/flexdecrypt

[50] Guardsquare N.V. (2022) ProGuard: Java Obfuscator and Android App
Optimizer . [Online]. Available: https://www.guardsquare.com/proguard

https://mobileconnect.io/wp-content/uploads/2019/02/mc-Telefonica-Spain-Improving-adoption-usage.pdf
https://mobileconnect.io/wp-content/uploads/2019/02/mc-Telefonica-Spain-Improving-adoption-usage.pdf
https://www.gsma.com/
https://www.gsma.com/identity/mobile-connect
https://www.gsma.com/identity/mobile-connect
http://dev.10086.cn/docInside?contentId=10000067529678
http://dev.10086.cn/docInside?contentId=10000067529678
https://id.189.cn/partnerCase/detail?type=jd_details
https://id.189.cn/partnerCase/detail?type=jd_details
https://en.wikipedia.org/wiki/List_of_mobile_network_operators
http://bjx.iimedia.cn/app_rank
https://www.cert.org.cn/publish/english/index.html
https://www.cert.org.cn/publish/english/index.html
https://saas.wostore.cn/saas/manager/userfiles/1/files/cms/article/%E5%B0%8F%E6%B2%83%E8%B4%A6%E6%88%B7-%E5%85%8D%E5%AF%86%E7%99%BB%E5%BD%95.pdf
https://saas.wostore.cn/saas/manager/userfiles/1/files/cms/article/%E5%B0%8F%E6%B2%83%E8%B4%A6%E6%88%B7-%E5%85%8D%E5%AF%86%E7%99%BB%E5%BD%95.pdf
https://saas.wostore.cn/saas/manager/userfiles/1/files/cms/article/%E5%B0%8F%E6%B2%83%E8%B4%A6%E6%88%B7-%E5%85%8D%E5%AF%86%E7%99%BB%E5%BD%95.pdf
https://id.189.cn/partnerCase/home
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2296
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2296
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1072
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1072
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262
http://dev.10086.cn/numIdentific
https://id.189.cn/banner/unPassword
https://onlinebusiness.10010.com/product/5302?chnl=none
https://onlinebusiness.10010.com/product/5302?chnl=none
https://mobileconnect.io/wp-content/uploads/2019/02/mc-Mobile-Identification-goes-Live-UK.pdf
https://mobileconnect.io/wp-content/uploads/2019/02/mc-Mobile-Identification-goes-Live-UK.pdf
https://mobileconnect.io/wp-content/uploads/2019/02/mc-America-Movil-Mexico-Increasing-VAS-usage-2.pdf
https://mobileconnect.io/wp-content/uploads/2019/02/mc-America-Movil-Mexico-Increasing-VAS-usage-2.pdf
https://myzenkey.com/developer/
https://hizligiris.turkcell.com.tr/en/fast-login/what-is-fast-login
https://hizligiris.turkcell.com.tr/en/fast-login/what-is-fast-login
https://mobileconnect.io/wp-content/uploads/2019/02/mc-Mobilink-Increasing-reg-operator-services.pdf
https://mobileconnect.io/wp-content/uploads/2019/02/mc-Mobilink-Increasing-reg-operator-services.pdf
http://www.atoncorp.com/aton/en/pass-en/
http://www.atoncorp.com/aton/en/pass-en/
https://fido.kt.com/ktauthIntro
https://fido.kt.com/ktauthIntro
https://www.skt-id.co.kr/memberportal/login/main
https://www.skt-id.co.kr/memberportal/login/main
https://www.ipification.com/press/ipification-secure-mobile-authentication-available-to-3-hong-kong-subscribers
https://www.ipification.com/press/ipification-secure-mobile-authentication-available-to-3-hong-kong-subscribers
https://www.ipification.com/press/ipification-passwordless-one-click-mobile-authentication-partners-with-metfone-in-cambodia
https://www.ipification.com/press/ipification-passwordless-one-click-mobile-authentication-partners-with-metfone-in-cambodia
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://open.10086.cn/#/capability/14
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://frida.re/docs/functions/
https://www.kuaishou.com/
https://www.kwai.com/
https://ir.kuaishou.com/news-releases/news-release-details/kuaishou-technology-announces-fourth-quarter-and-full-year-2021
https://ir.kuaishou.com/news-releases/news-release-details/kuaishou-technology-announces-fourth-quarter-and-full-year-2021
https://www.virustotal.com/gui/home/upload
https://english.sina.com/weibo/
https://english.sina.com/weibo/
https://www.apple.com/legal/internet-services/terms/site.html
https://www.apple.com/legal/internet-services/terms/site.html
https://consumer.huawei.com/en/legal/terms-of-use/
https://consumer.huawei.com/en/legal/terms-of-use/
https://www.qimai.cn/
https://appstore.huawei.com/
https://appstore.huawei.com/
https://www.apple.com/app-store/
https://www.apple.com/app-store/
https://github.com/JohnCoates/flexdecrypt
https://www.guardsquare.com/proguard

[51] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang,
and X. Wang, “Things you may not know about android (un) packers:
A systematic study based on whole-system emulation.” in NDSS, 2018.

[52] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive unpacking of
android apps,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 2017, pp. 358–369.

[53] Umeng.com. (2021) Developer Center. [Online]. Available: https:
//developer.umeng.com/docs/143070/detail/145892

[54] MvnRepository. (2021) Maven Repository: org.smali | dexlib2. [Online].
Available: https://mvnrepository.com/artifact/org.smali/dexlib2

[55] China Telecom. (2021) Signed Agents. [Online]. Available: http:
//id.189.cn/contractUs

[56] Android Developers. (2021) Android Debug Bridge (adb). [Online].
Available: https://developer.android.com/studio/command-line/adb

[57] Tencent Cloud. (2021) Number Verification Service (NVS). [Online].
Available: https://cloud.tencent.com/product/nvs?from=14588

[58] Wuhan Douyu Network Technology Co., Ltd. (2021) Douyu TV
Mobile Client: HD Game Interactive Video Live Broadcast. [Online].
Available: https://www.douyu.com/client?tab=client#mobile

[59] Chengdu Ledong Information Technology Co., Ltd. (2021) Codoon:
Intelligent Sports Platform & Professional Equipment Shopping Guide.
[Online]. Available: https://www.codoon.com/

[60] Shanghai Chuanglan Yunzhi Information Technology Co., Ltd. (2021)
Chuanglan Shanyan. [Online]. Available: https://shanyan.253.com/

[61] Shenzhen Hexun Huagu Information Technology Co., Ltd. (2021)
AURORA Verification. [Online]. Available: https://www.jiguang.cn/en/
identify

[62] GEETEST. (2021) geetest-product overview. [Online]. Available:
https://docs.geetest.com/onelogin/overview/prodes/

[63] NetEase Company. (2021) Number Verification: NetEase Easy Shield.
[Online]. Available: https://dun.163.com/product/phone-verification

[64] ZhangTao Network. (2021) MobTech: Get the Phone Number on
Operator’s Gateway and Verify the Phone Number in One Second.
[Online]. Available: https://www.mob.com/mobService/secverify

[65] Merit Interactive Co.,Ltd. (2021) Getui One-Tap Authentication:
Passwordless Login. [Online]. Available: https://www.getui.com/verific
ation

[66] Shareinstall.com. (2021) Shareinstall: Passwordless Login with Mobile
Phone Number . [Online]. Available: http://www.shareinstall.com.cn/
one-click-login.html

[67] SUBMAIL. (2021) [Passwordless Login] One-Tap Login, Local
Authentication, Safe and Efficient. [Online]. Available: https:
//www.mysubmail.com/onepass

[68] Xuanwu Tech. (2021) Jixin Cloud Communication: One-Click Login.
[Online]. Available: https://www.139130.com/productsandservices/info
.aspx?itemid=14

[69] Beijing Emay Technology Co., Ltd. (2021) Emay: One-Tap Login.
[Online]. Available: https://www.emay.cn/article957.html

[70] Changzhou Qianfan Network Technology Co., Ltd. (2021) Qianfan
Cloud. [Online]. Available: http://www.qianfanyun.com/help/1270

[71] Baidu. (2021) Baidu AI Cloud Document - Phone Number Verification
Service (PNVS): One-Click Login Process. [Online]. Available:
https://cloud.baidu.com/doc/PNVS/s/gkc36e0aj

[72] Hangzhou Youpaiyun Technology Co., Ltd. (2021) Youpai Cloud:
One-Click Login. [Online]. Available: https://www.upyun.com/produc
ts/one-click-login

[73] Santi Cloud. (2021) Santi Cloud Communication Platform: One-Tap
Login, Passwordless Login, Local Number Login. [Online]. Available:
https://www.santiyun.com/fastCheck.html

[74] LongXinTong. (2021) One-Tap Login. [Online]. Available: http:
//www.hiht.cn/yjdl.html

[75] Weiwang Liantong. (2021) One-Key Authentication. [Online]. Available:
https://www.lmobile.cn/ch/yjrz.html

[76] DCloud. (2021) Official Website of Uni One-Click Login App.
[Online]. Available: https://uniapp.dcloud.net.cn/univerify

[77] China Internet Network Information Center. (2021) The
48th Statistical Report on China’s Internet Development.
[Online]. Available: http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg
/202109/P020210915523670981527.pdf

[78] ESurfing. (2021) Android Client of ESurfing Cloud Disk. [Online].
Available: https://cloud.189.cn/web/static/download-client/index.html

[79] China Telecom. (2021) Esurfing Account Open Platform: Password-free
Login. [Online]. Available: http://id.189.cn/banner/unPassword

[80] A. Bianchi, E. Gustafson, Y. Fratantonio, C. Kruegel, and G. Vigna,
“Exploitation and mitigation of authentication schemes based on device-
public information,” in Proceedings of the 33rd Annual Computer
Security Applications Conference, 2017, pp. 16–27.

[81] H. Wang, Y. Zhang, J. Li, H. Liu, W. Yang, B. Li, and D. Gu,
“Vulnerability assessment of oauth implementations in android applica-
tions,” in Proceedings of the 31st annual computer security applications
conference, 2015, pp. 61–70.

[82] H. Wang, Y. Zhang, J. Li, and D. Gu, “The achilles heel of oauth: a
multi-platform study of oauth-based authentication,” in Proceedings of
the 32nd Annual Conference on Computer Security Applications, 2016,
pp. 167–176.

[83] DENIS MASLENNIKOV. (2011) ZeuS-in-the-Mobile: Facts and
Theories. [Online]. Available: https://securelist.com/zeus-in-the-mobil
e-facts-and-theories/36424/

[84] Trusteer. (2012) The Song Remains the Same: Man in the Mobile
Attacks Single out Android. [Online]. Available: https://www.globalsecu
ritymag.fr/The-Song-Remains-the-Same-Man-in,20120710,31306.html

[85] F-Secure Labs. (2021) Trojan:Android/Crusewind. [Online]. Available:
https://www.f-secure.com/v-descs/trojan android crusewind.shtml

[86] W. Enck, P. Traynor, P. McDaniel, and T. La Porta, “Exploiting Open
Functionality in SMS-capable Cellular Networks,” in Proceedings of the
12th ACM conference on Computer and communications security, 2005,
pp. 393–404.

[87] N. Golde, “SMS Vulnerability on Feature Phones,” Ph.D. dissertation,
Master Thesis, Berlin Institute of Technology, 2011.

[88] A. Coletta, G. Maselli, M. Piva, D. Silvestri, and F. Restuccia, “My
sim is leaking my data: Exposing self-login privacy breaches in smart-
phones,” arXiv preprint arXiv:2003.08458, 2020.

https://developer.umeng.com/docs/143070/detail/145892
https://developer.umeng.com/docs/143070/detail/145892
https://mvnrepository.com/artifact/org.smali/dexlib2
http://id.189.cn/contractUs
http://id.189.cn/contractUs
https://developer.android.com/studio/command-line/adb
https://cloud.tencent.com/product/nvs?from=14588
https://www.douyu.com/client?tab=client#mobile
https://www.codoon.com/
https://shanyan.253.com/
https://www.jiguang.cn/en/identify
https://www.jiguang.cn/en/identify
https://docs.geetest.com/onelogin/overview/prodes/
https://docs.geetest.com/onelogin/overview/prodes/
https://dun.163.com/product/phone-verification
https://www.mob.com/mobService/secverify
https://www.getui.com/verification
https://www.getui.com/verification
http://www.shareinstall.com.cn/one-click-login.html
http://www.shareinstall.com.cn/one-click-login.html
https://www.mysubmail.com/onepass
https://www.mysubmail.com/onepass
https://www.139130.com/productsandservices/info.aspx?itemid=14
https://www.139130.com/productsandservices/info.aspx?itemid=14
https://www.emay.cn/article957.html
http://www.qianfanyun.com/help/1270
https://cloud.baidu.com/doc/PNVS/s/gkc36e0aj
https://cloud.baidu.com/doc/PNVS/s/gkc36e0aj
https://www.upyun.com/products/one-click-login
https://www.upyun.com/products/one-click-login
https://www.santiyun.com/fastCheck.html
https://www.santiyun.com/fastCheck.html
http://www.hiht.cn/yjdl.html
http://www.hiht.cn/yjdl.html
https://www.lmobile.cn/ch/yjrz.html
https://uniapp.dcloud.net.cn/univerify
http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/202109/P020210915523670981527.pdf
http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/202109/P020210915523670981527.pdf
https://cloud.189.cn/web/static/download-client/index.html
http://id.189.cn/banner/unPassword
https://securelist.com/zeus-in-the-mobile-facts-and-theories/36424/
https://securelist.com/zeus-in-the-mobile-facts-and-theories/36424/
https://www.globalsecuritymag.fr/The-Song-Remains-the-Same-Man-in,20120710,31306.html
https://www.globalsecuritymag.fr/The-Song-Remains-the-Same-Man-in,20120710,31306.html
https://www.f-secure.com/v-descs/trojan_android_crusewind.shtml

	Introduction
	Background
	One-Tap Authentication (OTAuth) Scheme
	OTAuth Scheme Details
	OTAuth Ecosystem in Mobile Apps
	Scope of Our Study

	Exploiting OTAuth Schemes
	Attack Model
	Attack Overview
	Attack Details
	Attack Implementation

	Large-scale measurement study
	Dataset
	Measurement Approach
	Results and Findings
	Other Implementation Weaknesses

	Mitigation
	Related Work
	Conclusion
	References

