
MIRAGE : Randomizing Large Chunk Allocation
Via Dynamic Binary Instrumentation

Zhenghao Hu
Shanghai Jiao Tong University

tonyhu@sjtu.edu.cn

Yuanyuan Zhang
Shanghai Jiao Tong University

yyjess@sjtu.edu.cn

Hui Wang
Shanghai Jiao Tong University

tony-wh@sjtu.edu.cn

Juanru Li
Shanghai Jiao Tong University

romangol@securitygossip.com

Wenbo Yang
Shanghai Jiao Tong University

wbyang@securitygossip.com

Dawu Gu
Shanghai Jiao Tong University

dwgu@sjtu.edu.cn

Abstract—Heap security relies heavily on the randomness of
chunk allocations in memory allocators to mitigate heap fengshui
and heap spraying attacks, which are the most widely used
techniques in modern exploits. However, randomness in large
chunk allocation has been overlooked. Memory allocators directly
call mmap (sometimes brk) syscall to allocate large chunks, while
the Linux kernel does not provide a fine-grained randomization
for mmap/brk syscall - only the base address is randomized, but
the offset between every two syscalls is predictable. The less
randomized large chunk will be vulnerable to heap fengshui and
heap spraying attacks.

In this paper, we assess the security of three most repre-
sentative general-purpose memory allocators, Glibc ptmalloc,
OpenBSD PHK malloc, and DieHarder, in scenario of large-
chunk-based attacks, with successful heap fengshui and heap
spraying attacks under Nginx. We then present MIRAGE, a
transparent, portable, and memory allocator agnostic, runtime
large chunk randomizer to fortify the existing memory allocators
against large-chunk-based attacks. Large chunk fengshui and
spraying attacks can be successfully mitigated by MIRAGE with
a fine-grained randomization in mmap/brk syscall. And, MIRAGE
imposes an acceptable overhead in performance.

I. INTRODUCTION

The war in heap security has never stopped. Among all the

heap attacks proposed in the last few decades, the emerging

of heap spraying [1] and heap fengshui [2] has proven to be

the most effective and widely adopted methods to circumvent

security mitigations. The idea of heap spraying is to exhaust

as much memory space as possible in purpose of an ASLR

[3] [4] entropy reduction, so that the attacker can find a

relatively reliable address to land and perform the subsequent

attacks. As to the heap fengshui technique, the attacker is

able to predict the allocated chunk address by studying the

internal mechanism of the memory allocator, so the attacker

can combine any vulnerability, like heap overflow or use-after-

free, to corrupt and exploit a controllable chunk.

In most cases, a finer-grained chunk randomization is very

effective against heap fengshui and heap spraying. Security

memory allocators [5] [6] are proposed to facilitate a more

randomized chunk allocation in a design of BiBOP [7] style,

with ”Big Bag of Pages” acting as a memory pool. However,

for all the security memory allocators, the randomization is

partial. Chunks are only randomized within a manageable

size, which is usually one page, since the randomize-able

chunks are all organized into single pages. For a chunk of

size over one page, a mmap syscall will be invoked directly,

and the allocation of such a chunk is handed to the system to

ensure its randomness. The problem is that the mmap syscall

of the underlying system is not fully randomized. In Linux

kernel, mmap is only randomized in the base address, but the

relative offset of each mmap syscall is not randomized. Every

mmap syscall maps the memory linearly down from the base

address. It will lead to a potential vulnerability that such less

randomized memory space can be leveraged by heap fengshui

and heap spraying.

To define a large chunk in a general environment, we

consider large chunks as those allocated directly with mmap
syscall in the memory allocators. The defined size of a large

chunk varies with different memory allocators. For security

memory allocators, the size is mostly set as 1 page (4KB),

which is the case of OpenBSD PHK malloc [5] and DieHarder

[6] . Other general-purpose memory allocators have more

diversed definitions. For instance, glibc ptmalloc [8] draws

the line at 128KB, while dlmalloc [9] is 256KB. Application-

specific memory allocators are those implemented internally

in large applications. They either reuse system malloc to

handle large chunks or directly use mmap syscall for the large

chunk allocations. Nginx internal memory allocator [10] reuses

system malloc for chunk size over 1 page, which makes the

large chunk allocation exactly the same as the general purpose

memory allocators. Php zend allocator [11] , on the other

hand, handles chunk size over about 2MB through direct mmap
syscall.

However, there is no effective mitigations against large

chunk spraying and large chunk fengshui attacks. Guard page

[12] is one technique that can be used to mitigate heap

spraying attack, though it is originally widely adopted as a

protection against heap overflow attack. For every large chunk

allocated, a page with no privilege will be appended after the

chunk, and any access to the page will trigger a SEGV fault.

It can reduce the success ratio in a heap spraying attack by978-1-5090-5569-2/17/$31.00 c©2017 IEEE

98

a limited amount, but is still far from a sound mitigation.

We will show in Section IV-B2 that it is trivial to bypass

guard pages in a heap spraying attack. Graffiti [13] provides an

empirical solution to detect heap spraying attacks, but suffers

from false positives and is limited to Intel CPUs with certain

virtualization feature. PaX RANDMMAP [14] and ASLP [15]

randomizes every mmap allocation so as to mitigate both heap

fengshui and heap spraying, but, on the other hand, is restricted

to the portability, since they both require to patch the kernel to

enable such feature, and in functionality, both of them disable

MAP FIXED in mmap syscall which will sometimes cause

troubles (Section V). Still other fine-grained ASLR solutions

[16] [17] [18] randomize the placement of every chunk by

padding a random size either at heap base address or on

every allocation. This kind of mitigation is far from enough to

successfully mitigate heap fengshui and heap spraying, either.

Random padding can be easily bypassed with a large heap

overflow in a heap fengshui attack, and the padding can also

be negligible in a heap spraying attack as long as the chunk

sprayed is large enough.

To overcome the problems of the previous works, we present

MIRAGE to mitigate both large-chunk-based heap fengshui

and heap spraying attacks by randomizing large chunk alloca-

tions at runtime. We design MIRAGE as a transparent layer

between the system and the memory allocator to ensure large

chunk randomization regardless of the types of the memory

allocator. The small chunk randomization is left to the security

memory allocator, like DieHarder, and PHK malloc, since they

have already done extensive and excellent work in this field.

mmap and brk syscalls are intercepted and handled exclusively

to provide more randomization, but with strictly the same

interface to both upper layer applications and underlying

system.

In the evaluation, we designed large chunk fengshui and

large chunk spraying experiment separately based on CVE-

2014-0133 or CVE-2013-2028, under glibc ptmalloc and

OpenBSD PHK malloc. Our result shows that MIRAGE can

successfully mitigate both large-chunk-based attacks with a

fine-grained randomization strategy. MIRAGE also introduces

little performance penalty. The runtime performance overhead

of MIRAGE is only 5 ˜10% on Nginx.

II. LARGE-CHUNK-BASED ATTACKS

In this section, we illustrate how to attack the large chunk

in real-world memory allocators. Our attacks are based on the

following assumptions:

1) The target program is deployed on conventional Linux

distributions (e.g. Debian, Ubuntu) using native Linux

kernel. The type of glibc or the underlying memory

allocator is not restricted, as long as the attacker is able

to allocate large memory chunks, and is able to trigger

mmap/brk syscall by this allocation.

2) The attacker can attack the application through heap

spraying and heap fengshui. And, she has at least one

vulnerability that can either corrupt the memory or hijack

the control flow. Because both heap spray and heap

fengshui are just vehicles for the attacks, which are used

to facilitate the attacker to develop a reliable exploit, and

they are unable to corrupt or hijack the program, at least

one vulnerability is required to trigger the attack.

3) There is no information leak in the target program or

system, because if there is any, heap spraying or heap

fengshui would be meaningless. Information leak breaks

ASLR by intrinsic. The attacker can only land to a

guessed address in a reliable memory padding through

heap spraying, or corrupt certain critical memory struc-

tures by learning the heap memory layout through the

studying of the memory allocator as is done in heap

fengshui. We define such critical memory structures as

heap metadata, which is a common attack surface of

memory allocators.

A. Large-Chunk-Based Attacks

To illustrate how large chunk allocations are vulnerable

and how they can be exploited, we analyze the internal

mechanism and attack surfaces of three representative memory

allocators: glibc ptmalloc [8] , OpenBSD PHK malloc [5] ,

and DieHarder [6] . We will illustrate how we can possibly

exploit the large chunk allocation in real world in this section.

Glibc ptmalloc is a memory allocator widely used in the

Linux distributions, including Debian, Ubuntu, etc. OpenBSD

PHK malloc and DieHarder are two representative security

memory allocators that can be ported to any system to help

fortify the application. OpenBSD PHK malloc is originally

a memory allocator implemented in the OpenBSD operating

system. However, many have ported this implementation to

Linux distributions because of its security. DieHarder is an

even safer memory allocator that introduces a finer grained

randomization and a complete heap metadata discretion.

1) Glibc ptmalloc: Glibc ptmalloc is a free-list based

memory allocator. Every chunk stores a header to indicate

the address of the previous or next chunk. Large chunks are

defined as chunks larger than mmap threshold (128KB by

default). For large chunk allocation either mmap or brk will be

called. If the total mmap allocation is less than n mmaps max

(65536 by default), mmap will be invoked for large chunk

allocation. Otherwise, brk will take the place instead. Small

chunk allocations in ptmalloc are performed through a large

continuous memory space called ”arena”. Instead of focusing

on the randomization of chunk placement, ptmalloc focus on

chunk reuse to provide a better performance.

Heap fengshui and heap spraying attacks are trivial. Since

both mmap and brk allocates memory in a continuous way,

requesting large chunks constantly in the spraying attack will

always result in a large memory space full of attacker’s

payload. Also, since heap metadata is placed as a header

along with the chunk data, and any overflow of the chunk

will lead to a heap metadata corruption, heap fengshui is only

needed to place a controllable chunk right after the overflowed

one, so that the heap metadata of the controlled chunk can

be manipulated directly. A lot of heap overflow exploitation

99

Fig. 1: DieHarder Internal Memory Structure

techniques can also be found both in publications and wild.

[19] [20] [21]

2) OpenBSD PHK malloc: OpenBSD PHK malloc differ-

entiates chunk allocations with size less than or equal to 1/2

page, and greater than half page. mmap is directly called for

large chunk allocation. For small chunks, chunk size ranges

from 16 bytes to 2048 bytes with an alignment of 2n where

4 <= n < 12. Every chunk of the size will be allocated in a

private pool of 4 pages. On allocation, 1 of the 4 pages will

be selected randomly and a random offset will be generated

to get the new chunk.

Chunk metadata is created and managed separately from

the chunk data. region info is one structure used to keep

track of the chunk addresses. It is managed in an array with

a random placement. Every time a large chunk is created, a

new region info entry will be randomly placed and updated

in the array. For small chunk, chunk info structure is created

for every page in the pool to record the chunk usage. A

region info structure will be added accordingly as well for

every chunk info structure.

For the heap fengshui attack, the attacker can successfully

control heap metadata by overflowing the region info array.

The region info array is the only heap metadata without a

forced guard page. It is directly mapped with mmap syscall,

and it will grow in a multiplier of 2 to ensure randomness, if

the free slots is less than 1/4th of the whole size. The attacker

can allocate a large chunk right after a growth in the array,

and overflow the large chunk to take full control of all the

region info structures. To circumvent the random placement

of region info in the array, the attacker can overflow as many

entries as possible, so there will be a higher probability

to trigger the crafted region info when manipulating heap

chunks.

To exploit heap spraying, the attacker can simply trigger

the large chunk allocation for many times. The allocated

chunks will be mapped directly through mmap syscall, and

the attacker’s payload will be sprayed into a large continuous

memory space, leading to the ASLR entropy reduction.

3) DieHarder: DieHarder is a representative memory al-

locator in the DieHard series. It performs similar strategy

as PHK malloc in chunk allocations. For large chunk over

one page, mmap will be invoked, and for small chunk, a

randomized allocation is performed. Small chunks of size from

8 bytes (for x86) or 16 bytes (for x64) to 1 page (4096

bytes) are each aligned by a power-of-two. (Figure 1) Every

chunk of the size is organized into pages as a private memory

pool, with a bitmap structure, which is allocated dynamically

by the underlying system malloc, to store the chunk usage

information. Chunk pages are managed by an array of 18

entries for an incremental page request. Each entry takes

charge of 2n pages (0 <= n < 18), making a maximum

of 1GB for every chunk of the size. Whenever the number

of free chunks is less than a certain threshold, the next entry

will be ”activated” to request extra pages, so the randomness

requirement can be satisfied.

The randomization procedure splits up into two stages.

At the first stage, DieHarder maps a large memory pool to

handle page requests randomly. Stage two randomizes the

chunk selection. DieHarder randomly chooses a page from the

activated ones, and keeps randomly probing until an unused

slot is found.

Since DieHarder declares the heap metadata with ”static”

keyword, it is impossible to overflow the metadata because

they are all stored in data segment, and the size of heap

metadata is defined and fixed at compile time, so the attacker

cannot manipulate the location of heap metadata through heap

fengshui. The only metadata that is allocated dynamically at

runtime is the bitmap structure. However, there stands a slim

chance to attack the bitmap with large chunks. So, we consider

DieHarder invulnerable to attacks overflowing heap metadata.

However, DieHarder is still vulnerable in large chunk spray-

ing attack. DieHarder also directly uses the system mmap
to handle large chunk allocation. The exploiting strategy is

identical to the OpenBSD PHK malloc.

III. DESIGN & IMPLEMENTATION

We design MIRAGE to protect large chunk allocations for

both general purpose memory allocators and application spe-

cific ones. MIRAGE provides randomization for large chunks

at runtime. In the design of MIRAGE, we aim to satisfy the

following requirements:

• Portability : MIRAGE should be portable and easy to

deploy. And, MIRAGE will not ask for any system

modification to work correctly.

• Comprehensiveness : MIRAGE should be able to inter-

cept all the mmap and brk syscalls through the entire

life-cycle of the application.

• Transparency : MIRAGE should be memory allocator

and operating system agnostic. The functionalities and

features of the underlying system should be perserved.

• Fine Grained Randomization : MIRAGE should provide a

fine grained randomization at runtime that spread through

the entire virtual memory address space.

• Acceptable Overhead : Overhead introduced by MIRAGE

should be acceptable.

We build MIRAGE as a client library on top of DynamoRIO

6.2.0 [22] to satisfy the above requirements. DynamoRIO

provides runtime binary translation and instrumentation so that

we can intercept any syscall regardless the underlying system

or the upper-layer memory allocator. For brk migration, taint

100

Memory
Allocator

Application

Mmap
Intercept
Module

Brk Taint
Tracing
ModuleModule

Brk Migrate
Module

OS

Application

Internal
Memory
Allocator

MIRAGE

Fig. 2: MIRAGE Architecture Overview

tracking will also need dynamic instrumentation to record

brk memory references. The overhead of DynamoRIO is

substantial, but most of the overhead introduced is at program

initialization stage - the runtime overhead is relatively small.

For runtime services, like Nginx, the overhead of MIRAGE is

only 5 ˜10%.

The design overview of MIRAGE is shown in Figure 2.

MIRAGE is composed of two modules that separately handle

mmap and brk syscall because of their different behavior.

All the code of MIRAGE and exploit are open-sourced at

https://github.com/HighW4y2H3ll/RLCA.

A. mmap module

mmap module intercepts all the mmap/munmap/mremap
syscall, and redirect the memory mapping to a random un-

used address. The process memory layout is obtained from

/proc/pid/maps file, and is stored in data structures in avoid-

ance to repeatedly read and parse the maps file every time we

perform an allocation.

For multi-page allocations, we first filter out all the memory

holes large enough to hold the allocation. We then randomly

select one from these candidates, and place the new allocation

randomly in the hole. MAP FIXED flag is preserved and it will

force mapping a memory regardless the overlap, like what is

done in Linux kernel. For munmap, if any part of the requested

memory overlaps with an unmapped address, the un-mapping

procedure should fail. And for mremap, if MREMAP FIXED
and MREMAP MAYMOVE are both set, we should move the

old address to a fixed new address regardless the overlap. If

the MREMAP MAYMOVE is solely set, we will unmap the

old address, and map a new memory space randomly. And,

if none of the flag is set, which means we are in the direct

expand case, we will then try to directly allocate the memory

from the end of old address.

Randomizing large chunks of relatively small size, e.g.

one page in security memory allocator, will cause severe

fragmentation if those small-sized large chunks are also placed

randomly throughout the whole memory space. We try to

reduce such fragmentation by reusing the small memory holes

and pages at the margin in the memory layout. We maintain a

pool for single page allocations. When the page is requested,

we will randomly select a page from pool. We guarantee the

minimum randomness of page allocations by pre-filling the

pool with memory pages to an adjustable threshold before the

allocation. The filling process starts from the least sized holes

in the memory layout, splitting each into single pages, and

registers each into the page pool.

B. brk module

Different from mmap, brk starts from a more predictable

address, and it is designed to grow in a contiguous memory

space. Our design has to consider both the brk features and

the security requirements for randomness. MIRAGE keeps

the continuous memory allocation of brk, but randomizes the

base address dynamically. We achieve this by preallocating a

memory space in initialization. Every time we receive a brk
syscall, we will directly move the brk end pointer along the

preallocated memory to mimic a brk allocation. If the brk
address requested exceeds what we have allocated, we will

try to expand directly or move the old brk memory space to

a new address. Migrating brk memory space requires to fix

all the memory references pointing to the old space. In this

design, MIRAGE implements a taint tracking engine to keep

track of brk memory references when brk is first called.

The overhead of taint tracking grows significantly with the

size of the brk memory space. We optimize this with an

adjustable threshold for the brk memory, which avoids the

size of the taint table becoming too large. When the requested

size exceeds the threshold, MIRAGE will return as failed, as

what the Linux kernel does.

IV. EVALUATION

In this section, we evaluate both the security and per-

formance of MIRAGE. Our testbed is x64 Ubuntu 14.04.4

LTS, Linux 3.13.0-89-generic, with one 6-Core Intel Xeon

CPU E5-2643 v3, and 32GB RAM. The target application

is Nginx 1.4.7. In the security evaluation, we removed CVE-

2014-0133 [23] patch in large chunk fengshui attack. For the

large chunk spraying attack, CVE-2013-2028 [24] patch is

removed in the experiment. We perform all our attacks on a

single worker Nginx server in avoidance of any glitch in multi-

worker environment, when trying to manipulate the memory

layout precisely.

A. Vulnerability Detail

CVE-2013-2028 is a stack-based overflow caused by the

incorrect handling of http packet. Stack frame can be directly

corrupted and the attacker can hijack the control flow by

overflowing the function return pointer on the stack.

Listing 1: ngx http spdy read handler Code Snipets

1 smcf = ngx_http_get_module_main_conf(sc->
http_connection->conf_ctx,

2 ngx_http_spdy_module);
3
4 available = smcf->recv_buffer_size - 2 *

NGX_SPDY_STATE_BUFFER_SIZE;

101

with MIRAGE without MIRAGE
Overflow PHK Failed Stable
Overflow ptmalloc Failed Stable
Spray mmap (PHK) Failed 1/2048
Spray brk (ptmalloc) Partial Stable

TABLE I: Security Evaluation of MIRAGE

5
6 do {
7 p = smcf->recv_buffer;
8
9 ngx_memcpy(p, sc->buffer,

NGX_SPDY_STATE_BUFFER_SIZE);
10 end = p + sc->buffer_used;
11
12 n = c->recv(c, end, available);

CVE-2014-0133 is a heap-based overflow in the Nginx

SPDY protocol. As shown in Listing 1, before the calling the

recv at line 12, a size will be added (line 10). However, buffer

used can be set to a large number with a properly crafted SPDY

packet, which will eventually cause the overflow in recv buffer.

B. Security Evaluation

We have designed three types of attacks to leverage the

memory allocators: large-chunk-based heap fengshui attack,

large-chunk-based heap spraying attack, and brute force enu-

meration attack. Heap fengshui attack is performed under both

PHK malloc and ptmalloc to evaluate the effectiveness of

MIRAGE in protecting security memory allocator and insecure

memory allocators. Heap spraying attack and brute force

enumeration attack are evaluated together, under PHK malloc

and ptmalloc as well, to evaluate the effectiveness of MIRAGE

in mitigating entropy reduction attacks under both mmap and

brk memory space. The result is shown in Table I.

We do not include DieHarder in our experiment because: (1)

The heap metadata of DieHarder is statically placed in the data

segment, and it cannot be manipulated through heap fengshui

attack; (2) DieHarder presents identical feature as OpenBSD

PHK malloc in heap spraying attack.

1) Heap Fengshui Attack: In this attack, our aim is to

manipulate the memory layout through heap fengshui and

overflow the heap metadata by CVE-2014-0133. The over-

flowed buffer, recv buffer, is directly mmaped in both of

the memory allocators. Attacking ptmalloc chunk metadata

is trivial. Since the metadata places along with the chunk

data as a header, any overflow can somehow corrupt the heap

metadata. Only a little manipulation is required to make the

overflow corrupt a chunk we can control. To exploit this, we

start another thread requesting through the http fastcgi routine

before we trigger the vulnerability. This will pad a chunk

before the overflowed one. After the overflow, we can free

this chunk by closing the http connection.

For OpenBSD PHK malloc, additional chunk paddings are

required to force the heap metadata to reallocate. Theoretically,

we need to allocate 512 * 3/4 large chunks before the reallo-

cation of heap metadata, but there are adjustments have to be

made because of the previous large chunks allocated in Nginx.

We place the vulnerable buffer right after the reallocation of

heap metadata, and trigger the overflow to take control of the

metadata.

In the experiments, we get reliable overflows on both

glibc ptmalloc and OpenBSD PHK malloc with MIRAGE

protection off. Both of the heap metadata are corrupted. For

glibc ptmalloc, the size field of the next chunk is corrupted,

so the attacker can maliciously unmap a memory region of

any size when freeing this chunk. For OpenBSD PHK malloc,

the region info structs are overwritten by attacker controlled

data, so the attacker can maliciously free any chunk or clear

the region info of certain chunk. Thus, the attacker can either

unmap a memory region, or transform the overflow into an

UAF attack, leading to potential code execution or information

leak.

When MIRAGE is turned on, both of the attacks fail to over-

flow the heap metadata because of the mmap randomization.

In most cases, SEGV fault is generated because the overflow

writes to an unmapped address.

2) Heap Spraying Attack: In this attack, we focus on

heap spraying to reduce ASLR entropy. The entropy we can

successfully reduce depends on the size of the chunk we can

spray and the number of chunks we are allowed to allocate.

In Nginx, luckily, both can be controlled through the config

file. Chunk size we spray depends on client body buffer size,

and number to allocate are limited by worker connections. We

utilize the CVE-2013-2028 Stack Overflow vulnerability to

hijack the control flow with a stack pivoting gadget. We spray

our payload with large chunks, and put our crafted stack into

the memory. For every 1024 bytes we sprayed, we pad a long

chain of ret gadget in the front, and append the ROP [25] chain

at the end. This will greatly improve the success ratio of the

attack when we overflow and pivot the stack into our spraying

data. We adopt the technique introduced by blind-ROP [26]

to acquire the image base address - enumerating the return

address byte by byte when the worker thread stops crashing, so

that we are able to build the gadgets with hardcoded addresses

even when PIE/PIC is enabled.

OpenBSD PHK malloc is tested in the mmap heap spraying

attack. We spray the heap directly by allocating large chunks,

which is performed by controlling the client body buffer size
to be a size large enough, and the payload will be mapped in

a continuous memory space by mmap.

Triggering brk syscall for large chunk allocation in glibc

ptmalloc is a lot trickier in that 65536 large chunks should be

allocated first before the brk enters. To overcome this, we can

manually set the n mmaps max by intentionally invoking a

mallopt routine, which is used to tune the ptmalloc parameters

to set the value to a smaller one, or just simply mimic a large

chunk allocation by allocating a chunk slightly smaller than

the threshold, which will thus be placed by the brk syscall.

brk behavior also varies depending on whether PIE/PIC is

enabled or not. When PIE/PIC is enabled, brk base address

randomization is similar to mmap, which has 28 bits entropy.

If not enabled, brk base address will start from a lower address

which is more predictable and can be easily exhausted by heap

102

spraying.

In the experiment, we find that extra objects will be allo-

cated along with the large chunks we sprayed. However, this

affects little to the effectiveness of heap spraying attack even

though unexpected data is mixed with our attacking payload.

We can set the spraying chunk size as large as possible, so that

the effects of these extra allocated pages can be negligible. In

our experiment, the size is set to 128KB, while on average,

we have found that two extra pages will be mapped along

with every chunk we sprayed. So, we will have a probability

of only 1/16 that we will jump to an unexpected place. This

is also the case for guard pages. As long as the size of the

spraying chunk is large enough, we can control the probability

drop at a tolerable level.

The result shows that heap spraying in native execution is

quite reliable. We perform heap spraying attack with 4096

connections and 128KB client body buffer size, resulting in a

total memory allocation of 512MB. This can exhaust 17 bits

entropy in mmap or brk attack. Since Linux ASLR applies 28

bits entropy on x64 machine, we will have to guess the rest 11

bits with a probability of 1/2048. For mmap attack under x64

machine, this entropy reduction may still not be able to get a

reliable padding. brk (without PIE/PIC), however, locates in a

32 bit address space that is more predictable than mmap. We

are able to exhaust all the possibilities of the brk region with

512MB heap spraying. It is, thus, can be reliably exploited.

On the other hand, MIRAGE mitigates the entropy reduction

to some degree. The mmap location is randomly distributed

among all the unmapped addresses and is not placed contin-

uously. The entropy reduced is limited, and it’s impossible to

guess a suitable address to land. Though, MIRAGE provides

a more randomized brk memory region than the native one,

the entropy reduction is still unavoidable. One solution is to

set a smaller upper bound to the brk region size, and return

failed if the requested size is larger than the threshold. The

glibc ptmalloc will fall to using mmap when brk fails. We can

thus mitigate the entropy reduction by tuning the threshold to

brk region size.

3) Brute Force Enumeration Attack: Since Nginx forks out

worker process to handle the incoming requests, every worker

process share the same memory space as the parent process.

After every crash of the worker process, it will re-spawn with

the same memory layout as the initial state of the origin worker

process. They have the same brk base address, the same mmap
starting address, and the same subsequent mmapped memory

layout if given the same input. We can thus perform a brute

force enumeration attack to search the memory exhaustively

until we find the right place. This kind of attack can be used as

a complement to heap spraying attacks. Entropy is no longer

a critical consideration. We can send less data in spraying the

payload, but, we will have to perform more tries to find our

payload.

In the heap spraying attack, brute force enumeration may

be needed to improve the reliability. Since spraying with

mmap still leaves 11 bits entropy, at most 2048 tries (1024

on average) should be made to perform a successful attack.

For brk spraying attack, we can also brute force guessing the

address of brk region so that we could spray less payload into

the memory.

MIRAGE mitigates this attack as well. MIRAGE random-

izes mmap placement every time it is invoked. mmap will

return different address in every run, so the memory layout

will be unpredictable. In brk heap spraying attack, the attacker

is still able to allocate a large continuous memory region with

attacker controlled data. However, since there is a possibility

that brk region can move when the preallocated size is not

enough, we can mitigate the brute force enumeration attack

with randomly moved brk region.

C. Performance Evaluation

To evaluate the runtime performance of MIRAGE in real

life. We run the test against Nginx 1.4.7 under OpenBSD

PHK malloc with ABC benchmark [27] and evaluate the

performance of MIRAGE under single worker, 4 workers

and 6 workers. We run the tests from 1 to 1000 concurrent

clients requesting web pages from our Nginx server. Each

sending 100000 requests, and evaluate the requests processed

per second. The average performance overhead is 7.12% for

single worker, 5.93% for 4 workers, 8.89% for 6 workers.

The performance is more volatile for multi-worker situations

because of the process scheduling.

V. DISCUSSION

We implement MIRAGE with the same mmap/munmap/m-
remap behavior as the underlying Linux kernel. If the memory

requested by mmap with MAP FIXED flag overlaps an al-

ready mapped memory, the memory region will be overwritten

with the new memory. This may cause some crashes when

it overlaps certain randomized data. It is possible that we

can flag an exception in such condition, but we keep it as

a Linux feature to make MIRAGE completely transparent to

both application and kernel. We put our trust in the application

developers that they know exactly what they are doing to map

at a fixed address. One example is the loading of dynamic

libraries in glibc. Glibc loader (ld.so) will mmap a large space

at the first place, and then maps the data segment from the

image file part by part with MAP FIXED to override the

previously mapped address.

Stack grows automatically when stack usage exceeds the

allocated region. This may collide with the memory space

allocated randomly by MIRAGE in some occasions. It would

not be a problem in most cases if application developers are

careful enough in stack usage management, because randomly

placed memory would leave enough room for stack growth

in most cases. However, to handle this issue, one possible

approach is to keep track of all the stack allocations, and leave

enough room above the stack to be un-mappable. Randomized

allocations will not be placed too close above the stack, so

the collision of stack growth can be mitigated. To identify

the stack memory region, 2 situations should be considered

separately: main process stack, which is allocated by execve()

syscall, and thread stack, which is allocated with mmap()

103

Single Worker Four Workers Six Workers

Fig. 3: Comparison of Performance for Nginx

syscall. In the first scenario, the initial stack range can be

determined by the RSP value. For the latter case, thread stack

can be determined by identifying MAP STACK flag in mmap
syscall. In the experiment we tested, x64 memory space is

large enough to tolerate the collisions we mentioned above,

as well as a special thanks to the developers that write the

excellent code.

Since MIRAGE provides a randomized brk solution, we can

also protect small chunk in the brk memory space from heap

spraying attack. We can set a threshold to force brk region to

move periodically if the cumulative size requested through brk
reaches this threshold, so that we can ensure that the address

of brk memory space will be renewed from time to time. The

attacker can never guess the address of the payload she sprayed

with small chunks in the brk memory space.

VI. RELATED WORK

PartitionAlloc [28] is a memory allocator designed and

implemented in the chrome project. It allocates large chunk

over about 1MB through mmap, but in each with a random

address by utilizing the hint feature of mmap syscall. However,

it is an application-specific memory allocator that only applies

to the chrome browser, and still it cannot mitigate the existing

problems in the implementation of other memory allocators.

TRR [18] provides a custom program loader as a user-land

ASLR solution. Heap base is relocated randomly by growing

the heap base with a random amount of space using the

brk() system call. TRR only randomizes the memory layout

at program load time. Runtime mmap randomization is not

supported.

Other works can be categorized as follows:

1) DBI Assisted: DrMemory [29], Memcheck [30] are built

based on DBI (Dynamic Binary Instrumentation) tools in pur-

pose of memory error detection. They instrument and intercept

the malloc/free calls, and trace the allocation and deallocation

of every chunk. Both are designed to be able to detect various

memory errors, including heap overflow, malicious heap free,

UAF, etc. However, they are too comprehensive, and too

slow to be implemented in real-time services. The average

performance overhead is 15 ˜30 times.

Iyer et al. [31] proposed a solution using Detour to dynam-

ically hook malloc/free functions and place random paddings

around the allocated chunk. However, it still fails to provide a

throughout protection against large-chunk-based attacks. For

either large chunk fengshui or spraying attack, the random

padding is too small in size and is negligible comparing to

the large chunk. It also fails to protect x64 system, because

Detour only supports x86 binaries.

RUNTIMEASLR [32] presents a re-randomization strategy

to mitigate clone-probing attacks. The rationale behind it is

to re-randomize the process address space at every fork(), so

the attacker cannot figure out the memory layout by endless

probing. RUNTIMEASLR only re-randomizes the memory

layout on fork(), and tracks mmap only for code pointer fixing.

2) Compiler/Kernel/Hardware Assisted: Graffiti [13] re-

lies on EPT page-table, which is a virtualization feature

of some Intel processors, to detect heap spraying attack.

HeapSentry [33] requires to insert a kernel module to facilitate

heap overflow protection. CRED [34], AddressSanitizer [35],

HeapTherapy [36] require source code to perform compile-

time instrumentation. Those approaches can provide a very low

performance overhead with a relatively comprehensive miti-

gation. However, those approaches are not portable, because

they either require source code or specific hardware features

or kernel support to fully mitigate heap based attacks.

PaX RANDMMAP [14] provides a Linux kernel patch to

randomize the mmap and brk address. Bits from 12th to

27th are randomized on every mmap and the base address

of brk. There is, however, research [37] shows that it is still

buggy in some cases. On the Family 15h of AMD Bulldozer

processors the randomization entropy can be reduced by three

for instance.

ASLP [15] provides a comprehensive system for address

space randomization on x86 machine through the whole

life-cycle of a program, including an ELF rewriting tool

to randomize ELF segments and functions, and a custom

kernel to randomize user stack, brk and mmap addresses.

ASLP randomizes the start address of brk and add a random

offset between 0 - 4KB to provide sub-page randomization.

mmap address is randomly selected from the 3GB x86 user

space memory. An exception is generated when requesting

MAP FIXED address overlaps a mapped address.

Address Obfuscation [16] is a x86 solution based on binary

rewriting. Native codes are inserted directly into the binary

104

image providing randomizations both in program load time

and at runtime. mmap syscall is instrumented only in dynamic

linker to provide randomization to dynamic load library image

base address. Heap base address is padded with a random

size on initial, making the base address of heap unpredictable.

Malloc is intercepted with a wrapper function to provide a

random padding of 0 - 25% of size requested.

Bhatkar et al. presents another load time ASR solution

[17] by designing a C compiler to add custom randomization

code before the program started. However, brk base address

randomization and chunk allocation randomization are still

implemented based on random padding.

3) Native Hook: Runtime hooking can protect the heap by

fortifying the malloc/free functions with LD PRELOAD or

glibc ptmalloc native hooks. The former one hooks by hijack-

ing the symbol resolution in the glibc loader(ld.so), while the

latter one requires a native implementation with source code.

For most of the work, LD PRELOAD is preferred because of

its portability. It will work as long as suitable dynamic library

is provided. Heap protection of this kind either provides a

wrapper for the malloc/free functions [38], or re-implements

a much safer memory allocator [5] [6] [39] [40].

Wrapper approach is restricted to tracing and appending

heap red-zones. The memory allocation still reuses the system

memory allocator. Re-implementation approach is not sound

either. Since LD PRELOAD only hijacks the symbol resolu-

tion of library function calls, invoking syscalls directly in the

application will escape the protection.

VII. CONCLUSION

In this paper, we revisit the heap security and assess the

effectiveness of security memory allocators in large chunk

protection. We find that nearly all the memory allocators fail

to properly randomize the large chunk. Memory allocators put

too much trust in the underlying system to provide a properly

randomized large chunk placement through mmap syscall. In

the common Linux distributions, the mmap syscall is only

randomized in base address, rather than the relative offset. We

show that it is possible to attack memory allocator by large

chunk fengshui and heap spraying. To mitigate this problem,

we present MIRAGE as a complement to security memory

allocators to provide a runtime randomization for large chunk

allocations. MIRAGE forces randomization in mmap and brk
syscall by an efficient binary instrumentation. We show that for

applications with MIRAGE, large chunk fengshui and spraying

attacks are successfully mitigated. And, the runtime overhead

is less than 10%.

REFERENCES

[1] “Advanced heap spraying techniques,” https://www.owasp.org/
images/0/01/OWASL IL 2010 Jan - Moshe Ben Abu - Advanced
Heapspray.pdf.

[2] A. Sotirov, “Heap feng shui in javascript,” Black Hat Europe, 2007.
[3] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of executable

code revisited,” in Reverse engineering, 2002. Proceedings. Ninth work-
ing conference on. IEEE, 2002, pp. 45–54.

[4] P. Team, “Pax address space layout randomization (aslr),” 2003.

[5] O. Moerbeek, “A new malloc (3) for openbsd,” in Proceedings of the
2009 European BSD Conference, EuroBSDCon, vol. 9, 2009.

[6] G. Novark and E. D. Berger, “Dieharder: securing the heap,” in Pro-
ceedings of the 17th ACM conference on Computer and communications
security. ACM, 2010, pp. 573–584.

[7] D. R. Hanson, “A portable storage management system for the icon
programming language,” Softw., Pract. Exper., vol. 10, no. 6, pp. 489–
500, 1980.

[8] W. Gloger, “Ptmalloc,” Consulté sur http://www. malloc. de/en, 2006.
[9] D. Lea, “Dlmalloc,” 2010.

[10] W. Reese, “Nginx: the high-performance web server and reverse proxy,”
Linux Journal, vol. 2008, no. 173, p. 2, 2008.

[11] “Php zend allocator,” https://github.com/php/php-src/blob/master/Zend/
zendalloc.c.

[12] “Guard pages,” https://www.us-cert.gov/bsi/articles/knowledge/
coding-practices/guard-pages.

[13] S. Cristalli, M. Pagnozzi, M. Graziano, A. Lanzi, and D. Balzarotti,
“Micro-virtualization memory tracing to detect and prevent spraying
attacks,” in 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, pp. 431–446.

[14] “Pax randmmap,” https://pax.grsecurity.net/docs/randmmap.txt.
[15] C. Kil, J. Jun, C. Bookholt, and J. Xu, “Address space layout permuta-

tion,” DSN 2006, p. 194.
[16] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An

efficient approach to combat a broad range of memory error exploits.”
in Usenix Security, vol. 3, 2003, pp. 105–120.

[17] ——, “Efficient techniques for comprehensive protection from memory
error exploits.” in Usenix Security, 2005.

[18] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime randomiza-
tion for security,” in Reliable Distributed Systems, 2003. Proceedings.
22nd International Symposium on. IEEE, 2003, pp. 260–269.

[19] “Malloc des-male
carum,” http://phrack.org/issues/66/10.html.

[20] “Understanding glibc malloc,” https://sploitfun.wordpress.com/2015/02/
10/understanding-glibc-malloc/.

[21] J. N. Ferguson, “Understanding the heap by breaking it,” black Hat USA,
pp. 1–39, 2007.

[22] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” ACM SIGPLAN Notices, vol. 47, no. 7, pp. 133–144,
2012.

[23] “Cve-2014-0133,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-0133.

[24] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 227–242.

[25] R. Wojtczuk, “The advanced return-into-lib (c) exploits: Pax case study,”
Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e, 2001.

[26] “Blind return oriented programming (brop),” http://www.scs.stanford.
edu/brop/.

[27] “G-wan apachebench / weighttp / httperf wrapper,” http://gwan.com/
source/ab.c.

[28] “Partitionalloc,” https://chromium.googlesource.com/chromium/blink/+/
master/Source/wtf/PartitionAlloc.h.

[29] D. Bruening and Q. Zhao, “Practical memory checking with dr.
memory,” in Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. IEEE Computer
Society, 2011, pp. 213–223.

[30] J. Seward and N. Nethercote, “Using valgrind to detect undefined value
errors with bit-precision.” in USENIX Annual Technical Conference,
General Track, 2005, pp. 17–30.

[31] V. Iyer, A. Kanitkar, P. Dasgupta, and R. Srinivasan, “Preventing
overflow attacks by memory randomization,” in Software Reliability
Engineering (ISSRE), 2010 IEEE 21st International Symposium on.
IEEE, 2010, pp. 339–347.

[32] K. Lu, S. Nürnberger, M. Backes, and W. Lee, “How to make aslr win
the clone wars: Runtime re-randomization,” in Proceedings of the 2016
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, 2016.

[33] N. Nikiforakis, F. Piessens, and W. Joosen, “Heapsentry: kernel-assisted
protection against heap overflows,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2013, pp. 177–196.

[34] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow
detector.” in NDSS, vol. 2004, 2004, pp. 159–169.

105

[35] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker.” in USENIX Annual Technical
Conference, 2012, pp. 309–318.

[36] Q. Zeng, M. Zhao, and P. Liu, “Heaptherapy: An efficient end-to-end
solution against heap buffer overflows,” in Dependable Systems and
Networks (DSN), 2015 45th Annual IEEE/IFIP International Conference
on. IEEE, 2015, pp. 485–496.

[37] H. Marco-Gisbert and I. Ripoll-Ripoll, “Exploiting linux and pax aslrs
weaknesses on 32-and 64-bit systems,” 2016.

[38] A. Krennmair, “Contrapolice: a libc extension for protecting applications
from heap-smashing attacks,” 2003.

[39] E. D. Berger and B. G. Zorn, “Diehard: probabilistic memory safety for
unsafe languages,” in Acm sigplan notices, vol. 41, no. 6. ACM, 2006,
pp. 158–168.

[40] E. D. Berger, “Heapshield: Library-based heap overflow protection for
free,” UMass CS TR, pp. 06–28, 2006.

106

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

