112

China Communications

Digital Forensic Analysis on
Runtime Instruction Flow

Li Juanru, Gu Dawu, Deng Chaoguo, Luo Yuhao
Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract: Computer system’s runtime information is
an essential part of the digital evidence. Current dig-
ital forensic approaches mainly focus on memory
and I/O data, while the runtime instructions from
processes are often ignored. We present a novel ap-
proach on runtime instruction forensic analysis and
have developed a forensic system which collects in-
struction flow and extracts digital evidence. The
system is based on whole-system emulation tech-
nique and analysts are allowed to define analysis
strategy to improve analysis efficiency and reduce
overhead. This forensic approach and system are
applicable to binary code analysis, information re-
trieval and malware forensics.

Key words: digital forensics; dynamic analysis; in-
struction flow; virtual machine; emulation

I. INTRODUCTION

Dynamic runtime information such as instructions,
memory data and 1/0 data is a valuable source of
the digital evidence, and is suitable for reconstruc-
ting system events due to its dynamic characteristic.
Traditional digital forensic techniques are sufficient
to extract mformation from memory and 1/0 data,

2010.12

but to observe runtime mstruction flow, a low -level
description of a program’s behavior, more studies
are needed. Network intrusion and malicious behav-
ior are often carried out by a set of program in-
struction, leaving few evidences on hard disk, re-
ducing the effectiveness of media forensics and in-
creasing the importance of instruction analysis in
digital investigations.

Two challenges in extracting evidence from m-
struction flow are the difficulties of data tracing and
evidence distinguishing. Compared to other types of
dynamic information, instruction flow is hard to be
captured. Instructions are executed on the CPU in-
stantaneously and are more volatile than memory
data. Meanwhile, the CPU will produce a huge a-
mount of instructions because of the high execution
speed. Known techniques on capturing instruction
flow are in two different ways. The First and the
best researched is the debugging technique. A de-
bugger could control a process or even an operation
system, and could trace the runtime information.
But it is hard to record instruction flow completely.
Moreover, debugging will affect debuggee’s behav-
ior. So apparently, debugging is not suitable for evi-
dence collecting on instruction flow. The second

ResearcH PAPER

technique is virtual machine monitoring. Virtualiza-
tion is widely used in security analysis, and it could
observe and capture the privileged operations. But to
collect the whole set of instructions using virtualiza-
tion is not so convenient. Even if the instruction
flow could be traced, the huge number of instruc-
tions is in form of opcode. It is impossible to manu-
ally analyze the flow. Automatic analysis technique
must be used to extract useful information. Current
technique of binary analysis couldn’t be operated di-
rectly on instruction flow. Advances in tools and
techniques to perform nstruction flow forensics are
needed.

To solute the problems above, we have developed
a series of techniques and tools. The main contribu-
tions of this paper are:

- Evidence from the instruction flow. Forensic a-
nalysis requires the acquisition of many differ-
ent types of evidence. We have proposed a no-
vel view on capturing and analyzing instruction
flow, which extends the range of digital evi-
dence.

Emulator with generic andlysis capability. We
have implemented a whole-system emulator
based on bochs [1] to achieve instruction cap-
turing. Windows and Linux application could be
analyzed on this emulator. And our forensic a-
nalysis is compatible to various applications.
Conditiondl instruction record and automatic da-
ta recovering. We've provided an extensible in-
terface to let analyst define which instruction
should be captured, so as to reduce the amount
of record data. Conditions inchide time, memo-
ry Address, operands value and types of m-
structions.

Efficiency and accuracy. We've provided a se-
ries of tools and scripts to deal with the cap-
tured struction flow. The functions of these
tools include string searching, simple structure
recognition and related data searching. We have

also proposed some universal patterns related to
certain encrypt algorithm like DES, which helps

iSO

analyzing such algorithm more effectively based
on instruction flow.

The remainder of the paper is organized as fol-
lows. Section II introduces the characteristic of the
mstruction flow and how to use mstruction flow as
digital evidence. Section III describes our forensic
analysis technique in detail. Section I'V gives the im-
plementation of our forensic system. Experimental
evaluation is described in Section V and Section VI
offers conclusion.

. BACKGROUND

The instruction flow is an abstract concept that de-
scribes a stream of instructions from the process of
program execution. When programs are executed,
static instructions are loaded into memory and
fetched by the CPU. After each clock cycle of the
CPU, the executed instruction with its operands is
determined. Thus the sequence of the executed in-
structions composes a flow. Instruction flow con-
tains not only data, but also how data is operated,
thus is helpful on reconstructing system events. Ad-
ditionally, recent researchés on virtual machine se-
curity shows that instruction level analysis is an im-
portant aspect of computer security [2-3]. This
section describes the characteristic of the mnstruc-
tion flow and how to extract digital evidence from
the instruction flow.

2.1 Characteristics of the instruction flow

The instruction flow is different from the informa-
tion flow or the data flow. It is a flow that contains
information about low-level operation yet provides
more details about the system’s status. Like packet
in a network dataflow, the basic unit in an instruc-
tion flow is the single instruction. Properties of the
instruction are important for analysis. First, instruc-
tions in a flow are ordered by time, and the same in-
struction could be executed repeatedly and appears
in different positions of the flow. Notice that in the
instruction flow, operands are bind to instructions,
as illustrated in Figure 1. So even two instructions

201042

113

1

114

China Communications

YL

6 &4

in the different places of a flow are the same, ana-
Iyst could learn more from the position and oper-
ands. What’s more, an instruction could be loaded
into different memory addresses of different
processes. Same mstruction performs distinctly at
different virtual memory addresses. Another proper-
ty is that branch instruction is useless during analy-

sis because the execution path is determined when

the flow is generated. Finally, the form of the in-
struction flow remains the same despite of the
changing of upper level operation system. So the
same forensic analysis technique could be used ig-
noring platform differences.

Text Obfect
C Language Object

4 Raw Memory Object

'"This is a secret message"

unsigned chartext]] =
#This is a secret message"

db o54h, 068h, 06gh, o73h, 020h,
o6gh, o73h, 020h, a6h, 0zoh,
073h, 065h, 063h, ayzh, 065h,
o74h, ozoh, 06Dk, 065 h, 073h,
o73h, 061h, 067h, a65h

00401033 Mavzx edx,byte ptr ss:{ ebprecx(]; EDX=0x34
00401033 Movax edx,byte ptr ss:ebp +ecx+(], EDX=0x68
00401033 Moyzx edx,byte ptr ss:{ebp +ece1(]; EDX=0x69
00401033 Movzx edx byte ptr ss:febp +ecxC]; EDX=0x73
00401033 Mavzx edxbyte ptr ss:{ ebp+ecx1C}; EDX=0x20
00401033 Movax edxbyte ptr ssifebp +ece1C]; EDX=o0x69

Fig.1From string to instruction flow

2.2 Instruction flow as digital evidence

Individual disk drives, RAID sets, network packets,
memory images, and extracted files are the main
source of traditional digital evidence. But taking in-
struction flow as a source of digital evidence is
practical. A typical scenario for the application of
instruction flow analysis is the malware analysis
[4], which allows analyst to use a controllable, iso-
lated system to test the program and determines
whether the behavior is malicious. Consider the e-
vent that a Trojan horse program acquires the pass-
word, encrypts it with a fix public key and sends it

2010.12

to a remote server. The public encrypt algorithm,
public key and remote server’s address are all useful
evidences. Obviously these evidences are included
m the mstruction flow, but how to effectively rec-
ognize them in a huge quantity of instructions is a
problem. Our work gives an approach on how to
analyze instruction flow and search digital evidence.

fli. FORENSIC ANALYSIS ON RUNTIME
INSTRUCTION FLOW

Two main steps are essential to perform forensic a-
nalysis on runtime instruction flow. First, the in-
structions are recorded and the instruction flow is
generated. Second, after the instruction flow data is
acquired, automatic analysis should be introduced to
efficiently process the data and find out useful in-
formation. The following two subsections discuss
these two steps and then a standard form of evi-
dence from mstruction flow is proposed.

3.1 Instruction flow generating

To capture instructions directly from the execution
process, the CPU must be interrupted on every in-
struction. A trap flag based approach is introduced
in [5]. We choose emulation to fulfill the capture
function because it is simple and clear, the imple-
mentation detail of the system is described in Sec-
tion IV. Another important problem is to decide the
form of recorded instruction flow. We choose a da-
ta-instruction mixed form to record the flow, that is
to say, each mstruction’s opcode, operands and
memory address are recorded as a single unit and
these units are ordered by time to compose a flow.
Two modes are supported in instruction flow gener-
ating process:

Complete record: In this mode, the mstruction flow
contains every instruction executed by the CPU.
The data amount is huge and the running speed of
the emulated system will be affected. This mode
could bring the most precise record, yet sacrifice
efficiency and storage space. Although the amount
of instruction flow is large, to collect it is practical.

ReseArRcH PAPER

In our experiment, the execution will produce about
1G Bytes raw data per minute. That is almost the
same volume a raw video stream produced by a DV
camera, thus acceptable to store. When analyzing, it
is suggested that the conditional record mode mtro-
duced below be used first to get some clues, and
use these clues to guide the complete record.
Conditional record: In the execution process, many
mstructions are useless for analyzing. To reduce the
redundant data, various conditions could be used to
filter the instruction flow. We’ve designed an open
interface which allows analyst to define their own
filtering conditions and the combination. Conditions
supported by our system are listed below:

- Time. If the analyst knows the start and the end
of a specific behavior, the record process could
be set to start and stop at certain time point.
One situation is to start recording after the boot
of operation system.

Memory Address. The CPU executes instruc-
tion by fetching it from memory, and the virtual
memory address of the instruction is a special
feature. For system calls, their entry points are
already known and could be used as a condition
to determine program behavior. More flexibly,
analysts are allowed to capture or filter a range
of memory address. A very effective strategy
to monitor application on Windows is to filter
off instructions with memory address higher
than 0x70000000, which belongs to Kernel and
system service processes. The same strategy is
applicable on analyzing Linux (See Figure 2).

Instruction type. Different analysts may con-
cern different types of instructions. Analysts
could determine which types of mstructions
should be captured, thus constructing specific
mstruction flow. For instance, if the forensic a-

nalysis focuses on encrypt algorithms, arithme-
tic instruction such as XOR is important while
others could be filtered off.

Operands. The value of Operands illustrates the
content of an operation. To search a string in

B

an instruction flow, analyst could first focus on
the instructions with certain value of operands.
And operands are a good feature that seldom
changes if the algorithm and input data are fixed.
So code protection is invalid to hide information
when using operands value as feature.

Using such conditions and their combination to
filter the instruction flow, the data amount could be
reduced to a considerably small size.

3.2 Analysis of the instruction flow

After collecting of instruction flow, analysis is ready
to start. The aim of traditional binary analysis is to
reconstruct high-level abstraction of the code. But
in the instruction flow analysis process, the core
part is data abstraction. The mam purpose of the a-
nalysis is to express data in a clear form, and to find
evidence through data. Two modes are supported in
our analysis environment; offline analysis and online
analysis. When the analysis runs in the offline analy-
sis mode, saved instruction flow is analyzed, while
in online analysis, our system directly analyzes in-
struction flow in memory.

virtual Memory Space(4G)
for Windows XP

Ox80200020 - OxFFFFFFFF

System DLLs

@x50000000 - @x7FFFFFFF

2102400200 - @x5e20000Q

2xP0eA02R - exBA3FFFFF

Virtual Memory Space(4G)
for Linux 2.6

[kemel]
‘User Application

@xC020QR0@ - @xFFFFFFFF |

ox@sooRe0® - @xBFFFFFFF _J

Bx02202200 - @x@7FFFFFF

Fig.2 Memory Allocation in Windows and Linux

Offline analysis. In offline analysis mode, instruc-
tion flow is saved first and then scanned multiple

2010.12

115

If@ @‘i China Communications

116

times. We developed a series of tools and scripts to
deal with the collected instruction flow. The first
step is to analyze the data recorded in conditional
mode. The provided automatic tools check the data
bind to each instruction and maintain a sequence of
data related. In low-level language most of the
strings and arrays are operated with the same in-
struction for many times, so a large part of the data
information can be recognized after this operation.
The second step is to find useful information. Read-
able strings are automatically listed and are related
to mstructions. The related instructions are selected
as clues of digital evidence. The final step is to run
a complete record to gather a full set of instructions
that operates the information, and use the selected
instructions to slice the program and extract useful
fragments. .
Online analysis. Although to analyze real-time in-
struction flow loses lots of context mmformation, the
profit is apparent. Less storage space is needed and
running speed of emulation is expected to be faster.
Online analysis is a debug-like analysis, which al-
lows analyst to use some strong pattern(e.g. specif-
ic memory address, certain opcode) to quickly lo-
cate the suspicious instructions. In this mode the
forensic system also plays the role of a debugger
and supports all traditional debugging technologies.
3.3 Evidence from the Instruction Flow

One question about the mstruction flow forensic a-
nalysis is how to give a convincing evidence.

We propose a format of evidence from the in-
struction flow which the extracted evidence should
follow:

Data information from the instructions.Data infor-
mation from the instruction is the core part of the
digital evidence. It can be string information, IP ad-
dress, URL or any other readable nformation.
These kinds of data illustrate the analyzed events’
properties.

Related instruction set.The instructions that operate
the data information should be provided as support-
ing evidence to illustrate the generation and transfor-

2010.12

mation of the data.

External supporting data. External supporting data
such as Memory dump, Network flow, I/O data is
collected via black box analysis. These kinds of data
could be analyzed by traditional forensic analysis to
support the evidence from the instructions.

Testing environment. Testing environment should al-
so be provided so that other analysts could replay
the analysis.

IV. IMPLEMENTATION

In this section we describe the implementation de-
tail. To monitor the program’s behavior and capture
its instruction flow, a virtual environment is neces-
sary. We choose bochs, which is an open source
IA-32 (x86) PC emulator written in C + +, to build
this environment. In bochs we can run most operat-
ing systems inside the emulation, including Linux,
DOS and Windows. Moreover, bochs is a typical
CPU emulator that has a well designed structure for
adding monitoring function with little performance
overhead [6 |. By using CPU emulation, analysts
could collect instruction flow and trace software’s
activity, while the risk of evidence tampering is re-
duced.

Figure 3 shows the architecture of our forensic
system. We have designed an engine on the bochs
emulator to deal with the instruction flow. The en-
gine will read parameters from a configuration file
first, and analysts are able to set conditional filter
parameters in this file. Then, when the emulation
starts, the engine filters each instruction according
to the configuration and fulfills a conditional record.
A buffer in memory is maintained to record the in-
struction flow, and fulfills the data is not written
back to hard disk unless it reaches the buffer’s ca-
pacity. Real-time data compression mechanism is
optional for the buffered data to reduce the storage.
We have also provided scripts in perl and python to
automatically analyze instruction flow.

REeseArRCH PAPER

Instruction Flow
Output

—;‘;;‘:; eopition
module
I S ORI AT
fvidence extraction
Fig.3The architecture of the forensic system

Evidence output

V. EVALUATION

For digital forensics, accuracy is the most important
factor. The using of emulation imports less interfer-
ence to the analyzed object, yet sacrifices the effi-
ciency. So one essential target of forensic emulation
is to decrease emulation overhead. Several measures
have been adapted.

First, we use Windows PE [7] and SliTaz GNU/
Linux [8] as testing operation system platform be-
cause these two systems are the lightweight version
of the currently most widely used OS, and provide
complete environment with GUI. Second, the run-
ning speed is 10-100 times slower in complete re-
cord mode than the original emulation due to the de-
lay of hard disk writing. In order to improve the
speed, an SSD driver is used to collect instruction
flow and conditional record mode is suggested to be
used. A typical configuration for Windows program
analysis is shown in Table 1.

In real world, a program may use crypto algo-
rithm to hide information. The private key and the

iR SO

algorithm are the most important evidences [9].
We give a forensic analysis on a Linux program that
hides string information through DES encryption to
show how our system works.

Table 1 A typical configuration on anslyzing Windows program

k, - Parameter Configuration
e . Windows PE 1.5
Flatform (with Win XP SP2 kernel)
' instruction with address
Range of Memory addre§s i < 0x70000000
: nstruction type arithmetic, logical and
bit operation
- Record Time . -
Range of Operands -

The tested program is a Linux ELF file. Before
checking up the private key, we should first deter-
mine whether this program uses the DES algorithm.
We configure the forensic system for Linux envi-
ronment, restricting the range of memory address
from 0x08000000 to 0x10000000 and the value of
operands: only the instructions with operands less
than 0x100 are to be record. Then the system re-
cords the running process of the program on Slitaz
Linux 3.0. We collect an instruction flow and use
scripts to search for the Permuted choice 1 of DES
[10]:

{57,49,41,33,25,17,9,1,58,50,42,34,26,18,10,2,
59,51,43,35,27,19,11,3,60,52,44,36,63,55,47,39,31,
23,15,7,62,54,46,38,30,22,14,6,61,53,45,37,29,21,
13,5,28,20,12 4}

The search gives a solitary result shown in Table
2. The result shows a strong feature of DES en-
cryption. After the search we run the system again
in complete record mode and locate the address
0x80486C9. According to the specification of DES,
Permuted choice 1 is directly linked to main key. A
simple program slicing on 0x80486C9 will give a
loop of 56 times. Check the loop(see Figure 4), the
private key is easily extracted.

2010.12

117

/*@ Xé,“?; China Communications

118

Table 2 Search result of the instruction flow

vale of openmtk‘

Seq No. address opcode

143001 0x80486C9 MOV EAX,[offset] foffset] = =57~
143025 0x80486C9 MOV EAX,[offset] Toffset] = =49,
143049 0x80486C9 MOV EAX,[offset] [offset] = =41
143073 0x80486C9 MOV EAX,| offset] {offset] = =33
143097 0x80486C9 MOV EAX,[offset] [offset] = =25
143112 0x80486C9 MOV EAX,[offset] [offset] = =17 .

OxBO4B6CH

MOV32 EAX,([8xBBAA2A4](57)
©xB04B6DO LEA EDX,OxE4 Y
@x88486D7 MOV32Z EAX, [@xBFFFFD6@] (9x804B2C@)
OxBO4BEDA MOV3Z EAX, [6x864B3A4](1)
0xBB4BEDD MOV3Z [©xB84B1CA],EAX(1)
OxBB4BGEA LEA EAX,OxBFFFFD54
OxBO4BGE7 INC [OxBFFFFDS4](1) <----counter
©OxBOABGBB (MP [OXBFFFFDS4](2),56 <----key length
@x80486C3 MOV32 ECX,[OXBFFFFDS4}(2) <---~counter

Fig.4 A DES encryption loop

VI. RELATED WORK

The topic of forensic analysis on low-level, dynamic
information has attracted many researchers. Tools
for volatile memory analysis and for program be-
havioral analysis have been developed. FATKit [11]
provides the capability to extract higher level objects
from low-level memory images. But memory image
can not describe the behavior of program in detail.
Capture [12] is a behavioral analysis tool based on
kernel monitoring, which could analyze binary be-
havior. One shortage of Capture is that it focuses
on system call rather than program’s instruction. Al-
though this would bring abstraction and conven-
ience for analysis, a more fine-grained analysis on
binary code is required.

Our work is to introduce low-level instruction a-
nalysis to forensic system. Prior to our work, some
tools have provided analysis functions focusing on
certain aspects. Rotalum\'e [2] and TEMU [3]
are emulation systems based on the QEMU emulator
[13]. The target of these systems is to provide
syntax and semantics of the binary code, in other

201012

words, they try to transfer binary code to a high-
level abstraction concept rather than collect detail
evidence. Our system targets at collecting data from
the instruction flow, providing not only an emulator
but also a series of tools and methods to do forensic
analysis on dynamic instructions.

VIl. CONCLUSIONS

In this paper we have presented a novel approach
for forensic analysis and digital evidence collection
on the instruction flow. We have presented details
of a forensic system based on emulation. This fo-
rensic system deals with dynamic instructions.
Functions of the system include: (1) generation of
instruction flow, (2) automatical analysis of the in-
struction flow, (3) extraction of digital evidence.
The system also provides a flexible interface which
enables analysts to define their own strategy and
augment analysis. 4@t

Acknowledgements

This work is supported by SafeNet Northeast Asia grant a-
wards.

References

(1] Anon. Bochs: the Open Source IA-32 Emulation Project
[EB/OL]. http//bochs.sourceforge.net.

[2] SHARIF M, LANZI A, GIFFIN J, er /. Automatic Reverse
Engineering of Malware Emulators [C]// Proceedings of
the 30th IEEE Symposium on Security and Privacy(ISSP).
IEEE Press, 2009: 94-109.

[3] YIN H, SONG D. TEMU: Binary Code Analysis via Whole-

ResearcH Paper

system Layered Annotative Execution{ R]. Technical Re-
port. Berkeley, 2010.

[4] MALIN C, CASEY E, AQUILINA J. Malware Forensics:
Investigating and Analyzing Malicious Code [M]. Syn-
gress, 2008.

[5] DINABURG A, ROYAL P, SHARIF M, er al. Ether: Mal-
ware Analysis via Hardware Virtualization Extensions{ C]//
Proceedings of the 15th ACM Conference on Computer
and Communications Security (CCS). New York: ACM,
2008:51-62.

[6] MARTIGNONI A, PALEARI R, ROGLIA G, et dl. Testing
CPU Emulators{ C]// Proceedings of the 18th International
Symposium on Software Testing and Analysis. New York:
ACM, 2009:261-272.

7] Anon. What Is Windows PE? [EB/OL]. httpv/technet.mi-
crosoft.com/en-us/library/dd799308(WS.10).aspx.

[8] Anon. SkTaz GNU/Linux [EB/OL]. http//www.slitaz. org/

en/.

MAARTMANN-MOE C, THORKILDSEN S, ARNES A.

The Persistence of Memory Forensic Identification and

Extraction of Cryptographic Keys [J]. Digital Investiga-

tion, 2009, 6(1): 132-140.

[10] Anon. FIPS 46-2-(DES), Data Encryption Standard [EB/
OL]. http//www.itlnist.gov/fipspubs/fip46-2.htm.

[11] PETRONI N, WALTERS A, FRASER T, e d. FATKit: a
Framework for the Extraction and Analysis of Digital Fo-
rensic Data from Volatile System Memory[J]. Digital In-
vestigation, 2006, 3(4): 197-210.

(12] SEIFERTA C, STEENSONA R, WELCHA I, ef dl. Cap-
ture-A Behavioral Analysis Tool for Applications and Doc-
uments [J]. Digital Investigation, 2007, 4(1): 23-30.

[13] BELLARD F. QEMU, a Fast and Portable Dynamic

Translator[C]// Proceedings of the 2005 USENIX An-
nual Technical Conference. Berkeley: USENIX, 2005:

(9]

(& 30

41-46.
Biographies

Li Juanru, is currently a Ph.D candidate in Department of
Computer Science and Engineering, Shanghai Jiao Tong Univer-
sity. He received his B.S. degree from Shanghai Jiao Tong Uni-
versity in 2007. His research interests include software security
and Side Channel Attack.

Gu Dawu, is a full professor and a faculty member at Shanghai
Jiao Tong University in Computer Science and Engineering De-
partment. He was awarded a B.S. degree in applied mathematics
in 1992, and a Ph.D. degree in cryptography in 1998, both from
Xidian University. He is a senior member of China Computer
Federation and is also both members of IACR and ACM. He ev-
er wined the honor of New Century Excellent Talent made by
Ministry of Education of China in 2005. He was a visiting schol-
ar in Tokyo University in 2002, and a senior research fellow in
Katholicke Universiteit Leuven (KUL) i 2008, respectively. His
main research interests focus on applied cryptography and com-
puter security. He has got over 90 scientific papers in academic
journals and conferences.

Deng Chaoguo, is currently a Master candidate in Department of
Computer Science and Engineering, Shanghai Jiao Tong Univer-
sity. He received his B.S. degree from Tong Ji University n
2008. His research interests nclude software security.

Luo Yuhao, is currently a Ph. D candidate in Department of
Computer Science and Engineering, Shanghai Jiao Tong Univer-
sity. He received his B.S. degree from Tong Ji University in
2009. His research interests include software security.

2010.12

119

