
Vulnerability Assessment of OAuth Implementations in
Android Applications

Hui Wang*, YuanyuanZhang, Juanru Li, Hui Liu
Wenbo Yang, Bodong Li, Dawu Gu
Lab of Cryptology and Computer Security

Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai, China

ABSTRACT
Enforcing security on various implementations of OAuth

in Android apps should consider a wide range of issues com-
prehensively. OAuth implementations in Android apps dif-
fer from the recommended specification due to the provider
and platform factors, and the varied implementations often
become vulnerable. Current vulnerability assessments on
these OAuth implementations are ad hoc and lack a syste-
matic manner. As a result, insecure OAuth implementations
are still widely used and the situation is far from optimistic
in many mobile app ecosystems.

To address this problem, we propose a systematic vulne-
rability assessment framework for OAuth implementations
on Android platform. Different from traditional OAuth se-
curity analyses that are experiential with a restrictive three-
party model, our proposed framework utilizes an systema-
tic security assessing methodology that adopts a five-party,
three-stage model to detect typical vulnerabilities of po-
pular OAuth implementations in Android apps. Based on
this framework, a comprehensive investigation on vulnerable
OAuth implementations is conducted at the level of an entire
mobile app ecosystem. The investigation studies the Chi-
nese mainland mobile app markets (e.g., Baidu App Store,
Tencent, Anzhi) that covers 15 mainstream OAuth service
providers. Top 100 relevant relying party apps (RP apps)
are thoroughly assessed to detect vulnerable OAuth imple-
mentations, and we further perform an empirical study of
over 4,000 apps to validate how frequently developers misuse
the OAuth protocol. The results demonstrate that 86.2% of
the apps incorporating OAuth services are vulnerable, and
this ratio of Chinese mainland Android app market is much
higher than that (58.7%) of Google Play.

1. INTRODUCTION
OAuth is the most widely accepted authorization protocol

for third-party applications to obtain access to HTTP ser-
vices provided by mainstream service providers (SPs) such
as Google, Facebook, Twitter, and Sina Weibo. Over one

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or repu-
blish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA
c© 2015 ACM. ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818024

billion OAuth-based user accounts are now provided by dif-
ferent service providers, which is a factor that attracts An-
droid applications to integrate OAuth service as one of their
user management mechanisms. Major SPs provide the relying
parties (RPs) OAuth SDKs to integrate their OAuth servi-
ces, and RP developers are required to follow the documents
specified by the SPs. However, OAuth implementation on
Android apps is quite complex for developers. Because SPs
usually develop the OAuth SDKs referring to their impli-
cit security requirements and business logic, there exists
no standard OAuth implementation for Android apps. Me-
anwhile, developers may misunderstand SPs’ specifications
on how to use the SDKs. Since OAuth on mobile plat-
form is so sophisticated and situation varies on how apps
use OAuth, details in the OAuth authorization and authen-
tication processes should be assessed thoroughly to ensure
the security.

Current researches have pointed out many security th-
reats of OAuth caused by incorrect implementation. As
a multi-party protocol that is mainly designed to support
third-party authentication and authorization, the applica-
tion scenario is quite unique and difficult to comprehend. It
is a combination of both password authentication and trus-
ted third-party delegated authentication. If an SP provides
an insecure OAuth implementation or the developers misun-
derstand/misuse the protocol, it will introduce serious secu-
rity vulnerabilities. Wang et al. discover that the ignorance
of implicit security assumptions of SP when using OAuth
SDKs often leads to security issues [18]. Chen et al. reveal
the significant differences of OAuth implementation between
Web and mobile platforms. They further analyze the typical
incorrect implementations introduced by mobile app deve-
lopers due to the platform divergences [6]. However, those
proposed researches do not consider multiple mobile apps as
an integrated analysis object and most of the analyses are
ad hoc. Due to the lack of systematic security assessment,
security problems caused by incorrect OAuth implementati-
ons are far from being noticed or solved.

Without a comprehensive and systematical assessment,
plenty of details and subtle cases in an Android based OAuth
process may be ignored even by experienced analysts. For
instance, the user-agents on the Web platform and the An-
droid platform are different. On the Web platform, a user-
agent is typically a web browser. But on the Android plat-
form, there exist various user-agents including WebView, SP
app as well as a system browser. If an RP app uses Web-
View as the user-agent to perform OAuth authentication or
authorization, it could neither provide the isolation between

the user-agent and RP required by OAuth, nor verify the
identity of the RP app. Another case is that previous rese-
arches rarely consider the validation of the identity of an SP
app when it plays the role of a user-agent, the SP app instal-
led in the user’s smartphone can be a repackaged malicious
app downloaded from an untrustful third-party market.

To help developers and security audit analysts, we propose
a systematic assessment framework–AuthDroid to detect
vulnerable OAuth implementations on the Android plat-
form. Our framework adopts an extended OAuth security
model that considers issues of both Web-based and mobile-
based OAuth protocol to build a more comprehensive se-
curity model for Android app’s OAuth usage. It covers
the entire lifetime of OAuth authentication/authorization in
an Android app. To perform the security assessment com-
prehensively, our framework expands the traditional three-
party OAuth model to five-party. Apps of SP and RP are
considered as important roles in our model. Our assess-
ment then divides the OAuth authorization and authenti-
cation process into three stages according to the temporal
sequence: Stage I: the login stage, a user clicks the so-
cial login/share button, then RP launches an authorization
request and redirects the user to login the SP. Stage II:
the authorization stage, the RP obtains an authorization
grant and use it to trade for the access token from the SP.
Stage III: the resource access stage, the RP uses the ac-
quired token to access user’s resources on SP’s database. In
an authentication process, RP uses the obtained resources
to authenticate the user. Finally, security of the events in
each stage is evaluated in two main aspects: a) whether the
OAuth SDK implementations violate the security require-
ments of RFC specifications; b) whether developers misuse
the SDKs or misunderstand SPs’ OAuth specifications.

We conduct a comprehensive investigation on vulnerable
OAuth implementations at the level of an entire mobile app
ecosystem. The target of our investigation is a representa-
tive Android ecosystem–the Chinese mainland Android app
markets. To the best of our knowledge, this is the first
time an investigation on OAuth security is conducted at
an ecosystem level. Based on our proposed assessment fra-
mework, we systematically evaluate 15 major OAuth im-
plementations of the Chinese mainland app markets as well
as top 100 apps that incorporate relevant OAuth services.
Our AuthDroid adopts a hybrid approach with static code
analysis and dynamic network traffic analysis to examine
how those apps implement OAuth in Android, and particu-
larly analyzes how RPs authenticate users with OAuth. The
collected OAuth specifications, relevant SDKs, and apps are
thoroughly analyzed to uncover the typical misuses of those
OAuth implementations and the inconsistency with RFC
specifications. We found that 14 out of the 15 SPs support at
least one vulnerable OAuth implementation. According to
the typical OAuth misuses summarized from our assessment
of those 100 apps, we further statically analyze 4,151 apps to
validate how frequently developers misuse the OAuth pro-
tocol, and find that 86.2% of the apps incorporating OAuth
services are vulnerable to attacks. The result demonstrates
a much higher faulty rate of the China Android app market
compared with that (58.7%) of Google Play [6].

The contributions of this paper are twofold. First, we find
that the root causes of OAuth security assessment omissions
are due to two aspects: On the one hand, SPs and RP deve-
lopers lack a security assessment guideline and an implemen-

tation reference that are able to cover the entire lifetime of
the OAuth protocol. On the other, rare work has concerned
about the inconsistency between the OAuth implementati-
ons adopted by the SDKs and the official standards (i.e.,
RFC specification). Also, the misuse of SP’s SDK by de-
velopers is barely assessed. Thus developers’ misunderstan-
ding or casualness often leads to OAuth misuses in Android
apps. AuthDroid helps securely implement OAuth in An-
droid by assessing typical security vulnerabilities of OAuth
implementations in Android apps in a systematic way. Se-
cond, our investigation illustrates that security analyses on
OAuth should concern about restrictions from the mobile
ecosystem. Service providers vary a lot in diverse mobile
ecosystems. Many common security assumptions may not
be followed in a certain market and thus it is hard or even
impossible to implement a secure OAuth protocol in such
market environment. In a well-developed mobile app ecosys-
tem the SPs are more likely to provide secure OAuth speci-
fication, and help educate developers to implement correct
authorization/authentication service. While in an immature
mobile app ecosystem the SPs are more casual on both se-
cure specification design and developer restriction.

2. SECURITY CONSIDERATIONS
OAuth 2.0 [12] is the latest version of the OAuth protocol

which was originally created in late 2006. Compared to its
predecessor spec, OAuth 2.0 is a more secure version, it
focuses on client developer simplicity while providing specific
authorization flows for different usage scenarios. Major SPs
trend to obsolete OAuth 1.0 and move toward OAuth 2.0,
Facebook, Sina Weibo, and Microsoft only support OAuth
2.0 now. Therefore, we mainly discuss the implementation
of OAuth 2.0 (hereinafter referred to as “OAuth”, unless
otherwise specified) in this paper, and our analyzing targets
are mobile apps on the Android platform.

2.1 Protocol Flow
A typical OAuth flow involves three parties: 1) User, also

named as Resource Owner, has an account on the service
provider. 2) Relying Party (RP), a third-party applica-
tion that wants to verify user’s identity or access user’s pro-
tected resources. RP needs to register its application with
an SP before incorporating the SP’s OAuth service. A re-
gistered OAuth application is assigned a unique app ID and
app Secret. 3) Service Provider (SP), who stores user’s
resources and offers APIs for authorized RPs to access user’s
information. Figure 1 describes the interaction between the
three parties.

Relying party Service ProviderUser

1. Authorization Request

2. Authorization Grant

3. Authorization Grant

4. Access Token

5. Access Token

6. Protected Resource

Figure 1: Abstract Workflow of OAuth

2.1.1 Authorization Grant
The authorization grant depicted in step 2 in Figure 1

is a credential representing the resource owner’s authoriza-
tion, which can be used by RP to obtain an access token
from SP. The OAuth specification defines four grant types
to exchange for access token: authorization code, implicit,
resource owner password credentials, and client credentials.

The authorization code grant is a most commonly used
OAuth grant type. In this grant, SP requires to authenticate
the RP app by validating its app id and app secret before
issuing the access token. Therefore, the app id/secret needs
secure management and transmission.

The implicit grant is simpler than the authorization code
grant, SP responses with an access token when an RP app
requests for authorization. It removes the step to authenti-
cate the RP app, as a result, the implicit grant is not suitable
for authentication.

The latter two grants are rarely used. The credentials
can only be used when the RP app is highly trusted and
other authorization grant types are not available. Such RP
apps are not the ones installed in mobile devices, which we
assume not trustful.

In our study, we find out that the first three of the grant
types are used in Android for authentication and authoriza-
tion in practice.

2.1.2 User Agent
OAuth needs a user-agent to help implement the HTTP

redirection mechanism [11], which directs a user to the SP or
returns OAuth credentials (e.g., authorization code or access
token) back to the RP. A user-agent displays authentica-
tion and authorization pages to users, and deliver messages
between RP and SP.

In the web environment, browsers can accomplish the redi-
rection by handling HTTP 302 status code, they also provide
isolation between the RP and the user-agent to protect user
credentials. However, it is infeasible for the user-agents on
the mobile platforms to perform the same redirection. There
are three types of user-agent in Android: embedded Web-
View in RP app, SP app and system browser, which
vary a lot from the traditional user-agent (i.e., web brow-
ser) on the Web.

WebView is a custom webkit browser embedded in an app,
which can be used to present users with the OAuth authen-
tication and authorization pages. The hosted RP app can
control it by calling the methods loadUrl, setJavaScriptE-
nabled, addJavascriptInterface, etc, which may compromise
the security of OAuth.

To prevent client impersonation, authentication is requi-
red before delivering messages. The only secure authentica-
tion method is to validate the developer’s key hash of the
recipient [6]. Android requires that all apps be digitally sig-
ned with a certificate before they can be installed, and the
app developer holds the certificate’s private key. However,
the RP app’s developer’s key hash can only be verified using
a native mobile application, and as a consequence, a web-
based SP inside a WebView or a system browser is unable
to authenticate the RP app, using SP app as a user-agent is
the only possible way to implement OAuth correctly on the
Android platform. Table 1 illustrates the security features
of the three user-agents.

Type
RP app

validation
Isolation between
user-agent and RP

SP app Feasible Yes
WebView Infeasible No

System browser Infeasible Yes

Table 1: Features of User-agents

2.2 Attack Surface
Before considering the concrete attack surface, we make

the assumption according to the habits of common users: We
first assume that the user mobile device is not compromi-
sed, which means the standard security isolation of Android
is always effective. However, users may download apps from
third-party app markets rather than the official app mar-
ket. Such a behavior introduces the possibility of installing
repackaged apps or malware.

According to our observation, most attack surfaces of OAuth
in Android relate to the incorrect implementation of autho-
rization grants or the use of improper user-agents. We sum-
marize these attack surfaces in the following:

User-agent hijacking: When WebView is used as the user-
agent, a malicious RP app can hijack the hosted Web-
View to launch attacks on user authentication and app
authorization [13]. The attacker is capable of stealing
any information submitted by the user in the WebView
and modifying information displayed in the WebView.

When the SP app plays the role of a user-agent, a ma-
licious SP app (e.g, a repackaged one downloaded from
an untrustful market) has the access to all the informa-
tion it receives and forwards, including username/pas-
sword, authorization code, access token, refresh token,
etc.

Client impersonation: Secret management remains a chal-
lenge when the authorization code grant is used to ex-
change for the access token. If the app id/secret is hard
coded in the RP app, an attacker can perform static
analysis on the RP app to extract the client creden-
tials. If the app id/secret is obtained during runtime
and stored in the shared preferences, a malicious third-
party app installed in the device may attempt to read
from the shared filesystem, and the app id/secret can
be leaked when improper permissions are set for the
shared preferences file.

With the obtained app id/secret, a malicious third-
party app can impersonate the legitimate RP app to
interact with SP. Meanwhile, if the RP app is not
authenticated by the SP app in the authorization code
grant, malicious third-party apps can register similar
intent filters to the legitimate RP app to intercept the
Intent sent by the SP app, and access the data inside
the Intent.

Network attack surface: OAuth relies completely on SSL
for confidentiality and server authentication. A network
attacker could attempt to launch different attacks (e.g,
SSL stripping or SSL certificate replacement) to the
communication between a mobile device and an SP ser-
ver, or a mobile device and an RP server. If the trans-
port security measures are not properly set, the trans-

mission of security-sensitive information (e.g, user cre-
dentials, OAuth credentials) can be sniffed or tampe-
red by a network attacker.

3. VULNERABILITY ASSESSMENT

3.1 Assessment Model
We first describe our proposed assessment model for OAuth

implementations in Android apps. This model considers the
features of OAuth implementations including the main par-
ticipants and covers the entire OAuth procedure. Figure 2
depicts the model of OAuth authorization with an example
(an SP app is used as the user-agent).

To better describe the features of OAuth in Android, our
methodology extends the traditional three-party model of
OAuth to a five-party model, which includes user, SP ser-
ver, RP server, RP app, and user-agent. User-agent
and client applications of SP and RP are considered as im-
portant roles in our model. The three-party model ignores
the interactions between the RP app and the user-agent, as
well as the interactions between the clients and their ser-
vers. With our five-party model, we can assess the isolation
between RP app and user-agent, the authentication of RP
app and SP app, and the communications among different
parties thoroughly.

Meanwhile, our analysis model divides the OAuth authen-
tication and authorization process into three typical stages
according to the protocol flow: login stage, authorization
stage, and resource access stage, to analyze the message
sequences among different participates.

3.2 Assessment Methodology
The security assessment for OAuth implementation in An-

droid is based on our five-party model. We adopt a hybrid
methodology combining static code analysis and dynamic
network traffic analysis to evaluate how OAuth is imple-
mented in Android and extract the five-party model for each
implementation. Most prior studies on OAuth security eva-
luation focus on the authorization stage. However, security
flaws occurred at any stage can break the security of OAuth.
Our proposed assessment methodology takes all three sta-
ges into account to conduct a comprehensive investigation
on the implementation of OAuth in Android. In detail, secu-
rity of the events in each stage is evaluated from two aspects:
(a) SP inconsistency: the inconsistency between the SP’s
OAuth implementation and the OAuth official specification.
(b) RP misuse: RP developers’s misuse of SPs’ SDKs or
misunderstanding of SPs’ OAuth specifications.

As the OAuth implementations of different SPs vary from
each other, and an SP may have different implementations
for different authorization grant types or user-agent types,
we need to figure out how typical SPs implement OAuth
in Android to help build the five-party model. OAuth spe-
cifications, relevant SDKs, and client applications of these
SPs are analyzed thoroughly to extract the use-agent, key
methods, requests and parameters used in each implemen-
tation.

Taking the characteristics of Android into consideration,
we compare the extracted model of each implementation
against the RFC specifications [11, 12], to identify the vul-
nerabilities introduced by the SPs.

We also audit a small sample set of popular RP apps which
use the OAuth services provided by the typical SPs, to figure

out how OAuth is implemented in Android apps in detail.
The basic characteristics of the key parameters (e.g., app
secret, authorization code, access token) are gathered in this
analysis.

Based on the prior knowledge, we build AuthDroid, a
semi-automatic assessment framework for security assess-
ment of OAuth implementations in Android apps. It extends
the Androguard [1] reverse engineering suite.

AuthDroid first utilizes static pattern matching to ex-
tract basic elements (e.g., user-agent, identity of SP) from
RP app to get the major participants in the five-party mo-
del. The following aspects are assessed automatically:

Service Providers. AuthDroid analyzes the strings.xml,
AndroidManifest.xml and hard-coded strings in RP
apps to extract the character strings relevant to each
SP’s OAuth service, such as share.tencent.OAuthV2A-
uthorizeWebView, share tencent, etc. Then the SPs
whose OAuth services are incorporated by the RP app
can be determined.

User-agents. AuthDroid analyzes the methods used to
implement OAuth and the activities registered in the
manifest file, to figure out the supported user-agents
for each SP in the RP app.

Hard-coded Strings. AuthDroid extracts the suspicious
strings which are likely to be the app secrets for each
RP app based on the gathered characteristics of the
app secrets. These suspicious strings are analyzed further
to exclude the false positives.

SSL Validation. AuthDroid examines apps with respect
to inadequate SSL validation. This functionality is
achieved by referring to MalloDroid [8].

After the static analysis, we can first determine the iden-
tify of the SPs and the type of user-agents. Then, since a
certain SP uses uniform parameter names in different autho-
rization grant types, we can determine the corresponding
model(s) to guide the traffic analysis.

AuthDroid performs dynamic network traffic analysis to
obtain the message sequences among different participants.
The network traffic is generated manually and analyzed au-
tomatically in this part. We use Burp Suite [2] as the in-
tercept proxy to capture the requests/responses and identify
the key parameters in different stages, like app id, app secret,
authorization code, access token, etc, as shown in Figure 2.

Specifically, as the user authentication methods adopted
by RPs vary greatly, the critical parameters used by each RP
for authentication need to be extracted first and their roles in
the authentication should be further analyzed. AuthDroid
employs MitmProxy [3] to perform differential fuzzing analy-
sis to help understand how RPs authenticates users with
OAuth (two accounts A and B are registered manually for
each SP before analysis).

To eliminate the redundant parameters, AuthDroid uses
account A to perform OAuth authentication first, dumping
the OAuth authentication traffic with MitmProxy and ex-
tracting the authentication request. AuthDroid then checks
each parameter by replaying the extracted request with this
parameter removed. If the request results in a successful
authentication, this parameter is a redundant element. Af-
ter obtaining the critical parameters, AuthDroid uses ac-
count B to perform OAuth authentication and dump the

4. Login form

7. Authorization page

10. Authorization code
11. Authorization code

14. Access token
15. Access token

18. User resource
19. User resource

1. Login request
2. App id, redirect URI, permissions

3. Authorization request

5. User credentials
6. User credentials

8. User consent

12. App id, app secret, auth code
13. App id, app secret, auth code

16. API call, access token
17. API call, access token

20. user resource

9. User consent

Login
Stage

Resource
Access Stage

Authorization
stage

SP App RP Server SP ServerUser RP App

Figure 2: Model of OAuth authentication with SP app as the user-agent

traffic. AuthDroid extracts the authentication request of
account B as well, replacing one parameter in this request a
time with the corresponding parameter of account A, and re-
playing the request with other parameters unchanged. This
operation is executed iteratively until the last critical para-
meter is checked. Then AuthDroid analyzes RP server’s
responses to study how the RP server deals with these para-
meters and identify the root causes of their failure to authen-
ticate users with OAuth. The analysis of user authentication
with OAuth is detailed in Section 4.2.3.

3.3 Vulnerabilities
Based on the attack surfaces identified in Section 2.2, we

give comprehensive security considerations for OAuth in An-
droid beyond those in the OAuth 2.0 specification [12], and
summarize the most severe vulnerabilities as follows.
Vulnerability I (V1): Improper User-agent

Using an embedded WebView as the user-agent may com-
promise the security of OAuth, a malicious RP app can
launch attacks on both the user authentication and applica-
tion authorization [5].

Moreover, WebView and System browser are not suitable
for RP app authentication, using them as the user-agent
may result in client impersonation.
Vulnerability II (V2): Lack of Authentication

Apps can leak information when delivering messages without
authenticating the recipient. If the SP app fails to authen-
ticate the RP app, a malicious third-party app can register
similar intent filters to the legitimate RP app to intercept
the Intent sent by the SP app, and access the data contained
in the Intent, such as OAuth credentials.

Meanwhile, some SP apps provided by third-party mar-
kets are potentially repackaged malicious apps, as OAuth
protocol lacks authentication on SP apps by design, once
these malicious SP apps are installed in the mobile device
and used as the user-agent, it could receive and forward all
the security-sensitive information, including the user creden-
tials.
Vulnerability III (V3): Inadequate transmission protection

Messages are supposed to be transmitted securely during

an OAuth transaction. A network attacker could try to ea-
vesdrop transmission of the user credentials and the OAuth
credentials between the mobile device and the SP server. If
the security-sensitive information is transmitted in a plain-
text or the transport security measures (e.g., TLS) are not
correctly implemented, the security of OAuth cannot be gua-
ranteed.
Vulnerability IV (V4): Insecure secret Management

When the authorization code grant is used for authentica-
tion or authorization, the app secret management remains
a challenge. Some RPs prefer to hard code the app id/se-
cret in the client application. Attackers can perform static
analysis on the RP apps downloaded from app markets to
obtain the app id/secret from source code or binary, with
the app id/secret he can obtain access tokens on behalf of
the attacked RP app.

Some other RP apps prefer to obtain app secrets from
their back-end servers at runtime instead of hard coding it,
and cache it in a shared preferences file in the local device.
However, if the permissions of the secret file are not properly
set, for example, the file is world-readable, other malicious
apps installed in the mobile device can read from the shared
filesystem to obtain the app secrets. The situation is the
same when RP app caches the authorization code or access
token in shared preferences.
Vulnerability V (V5): Problematical server-side validation

When RP app sends a resource request along with its
access token to the SP server, some SP servers may not va-
lidate the access token correctly and return resources accor-
ding to the user id. If the communication between RP and
SP is not well protected, or the RP app can be controlled
by an attacker, the attacker could exploit this vulnerability
by modifying the request and replaying it to obtain other
users’ protected resources without their authorization.
Vulnerability VI (V6): Wrong authentication proof

Some RP servers prefer to use wrong authentication pro-
ofs (e.g, access token or user id) to authenticate the users. If
the communication between the RP app and RP server is not
well protected, the attackers may obtain the OAuth creden-
tials, which can be used to access user’s protected resources

SPs Installs Authorization grant User-agent
RP app

authentication
Enforced
HTTPS

Sina Weibo 100-500 million Auth code/Implicit W/A yes yes
Tencent Weibo 10-50 million Modified implicit W/A no no
Qzone 100-500 million Modified implicit W/A/B no no
QQ 1-1.5 billion Modified implicit W/A/B no no
Wechat 1-1.5 billion Auth code A yes yes
Youdao Note 10-50 million 1.0a/Auth code W/A yes W no/A yes
Evernote 10-50 million 1.0 W no yes
Yixin 10-50 million Auth code W/A yes no SSL
Douban 5-10 million Auth code W no yes
Renren 50-100 million Auth code/Implicit W/A no W no/A yes
Kaixin 10-50 million Auth code/Implicit/Password W no no SSL
Baidu 100-500 million Auth code/Implicit W no no
Taobao 0.5-1 billion Auth code/Implicit/Password W/A no no
Laiwang 10-50 million Auth code A no no
Alipay 100-500 million Auth code/Implicit W/A no no

Table 2: Features of major SPs’ OAuth implementations. Three authorization grants are used: auth code
(Authorization code grant), implicit (implicit grant), password (Resource Owner Password Credentials).
Three types of user-agent in Android: WebView (W), SP app (A) and System browser (B).

or even login to user’s RP account without authorization.

4. EMPIRICAL EVALUATION
Overall, we investigated 4,151 apps with AuthDroid to

study their properties with respect to the usage of OAuth, of
which 1,372 incorporate OAuth services. Figure 3 illustrates
the numbers of apps using the OAuth services provided by
each SP or third-party OAuth SDK. Specifically, the num-
bers of apps using WebView as the user-agent are indicated
in the chart as well.

 0

 200

 400

 600

 800

 1000

 1200

SinaW
eibo

W
echat

Q
Q

TencentW
eibo

R
enren

Q
zone

Baidu

D
ouban

Alipay

Yixin
Kaixinw

ang

YoudaoN
ote

Evernote

Taobao

Laiw
ang

U
m

eng

ShareSdk

N
u
m

b
e
r

o
f
A

p
p
s

Total
WebView

Figure 3: The numbers of apps using OAuth services
provided by each SP

Meanwhile, we investigate 15 major SPs’ OAuth imple-
mentations for the App market in Chinese mainland, in-
cluding Sina Weibo, Tencent Weibo, Qzone, QQ, Wechat,
YoudaoNote, Evernote, Renren, Kaixinwang, Baidu, Tao-
bao, Laiwang, and Alipay. Table 2 lists the features of these
SPs’ OAuth implementations.

In the following, we introduce the results of our investiga-
tion for different stages of OAuth flow. Table 3 summarizes

the vulnerabilities in each SP’s OAuth implementation in
different stages.

4.1 SP Inconsistency

4.1.1 Login Stage
OAuth specifies a process for users to authorize RP apps

to access their protected resources stored in the SP servers
without sharing their credentials. In other words, the RP
apps should not be able to obtain user credentials (e.g., use-
name/password).

SP
Stage I Stage II Stage III
V1 V3 V1 V2 V3 V5

Sina Weibo
√

×
√

× ×
√

Tencent Weibo
√

×
√ √

× ×
Qzone

√
×

√ √
× ×

QQ
√

×
√ √

× ×
Wechat × × × × × ×
Youdao Note

√ √ √
×

√
×

Evernote
√

×
√ √

× ×
Yixin

√
×

√
× × ×

Douban
√

×
√ √

× ×
Renren

√ √ √ √ √ √

Kaixin
√ √ √ √ √

×
Baidu

√
×

√ √
× ×

Taobao
√ √ √ √ √

×
Laiwang × × ×

√
× ×

Alipay
√ √ √ √ √

×

Table 3: Vulnerabilities of each SP’s OAuth imple-
mentation.

As shown in Table 3, 13 (86.7%) SPs support to use the
embedded WebView as the user-agent which cannot provide
the required isolation between the user-agent and the RP
client. A malicious RP app can take full control of the em-
bedded WebView and obtain user credentials with no effort.

Only four SPs enforce to use HTTPS to protect the com-
munication. YoudaoNote and Renren enforce HTTPS when
using SP app as the user-agent, while WebView plays the

role of the user-agent, HTTPS is not enforced. Kaixinwang
even transmits the user credentials in a plaintext without
any protection. Some SPs use HTTP to transmit user cre-
dentials in the login phase but encrypt the password inde-
pendently, which is safe as well.

4.1.2 Authorization Stage
The authorization stage is the core part of an OAuth flow.

However, the implementation of OAuth in this stage is error-
prone for the most mobile developers.

The WebView user-agent threats this stage as well, a ma-
licious RP app can modify the requested permissions dis-
played in the authorization page to get more permissions
than the user grants, which may leak user’s resource.

When the SP app plays the role of the user-agent, the RP
app and the SP app are supposed to authenticate each other.
However, only four SPs support to validate the developer’s
key hash of the RP app. Other SPs do not provide any
method to verify the identity of the RP app. We repacka-
ged an RP app (the developer’s key hash of the repackaged
RP app is different from the legitimate one) to test the rest
11 SPs, all client applications of these SPs trusted the repac-
kaged RP app and performed OAuth authorization without
security warning. Furthermore, none of the 15 SPs provide
a way for RP apps to authenticate the SP clients.

Among these SPs, Taobao and Kaixinwang support to
use the insecure resource owner password credentials grant,
which may leak the user credentials in transmission. We
find a popular music app named Xiami (install base between
30,000,000 and 50,000,000) uses this grant implemented by
Taobao for authentication and leaks the user credentials.

4.1.3 Resource Access Stage
Most studies in recent years focused on the security of

the authorization phase [10, 16, 17, 18, 20]. The resource
access phase is often neglected by SPs. In the authorization
code grant, access token are bound to both the user id and
the app id, while in the implicit grant, access tokens are
only bound to the user id. This would mean that the access
token used in the implicit grant is different from the one
used in the authorization code grant, SPs need to provide
different validation mechanisms for different tokens. When
RP trades an access token for user’s protected resources, the
corresponding SP needs to verify the binding between the
token and the user id in the authorization code grant, as
well as the binding between the token and the app id. And
in the implicit grant, the binding between the token and the
user id needs to be verified.

Sina Weibo and Renren implement OAuth incorrectly in
this phase, both of them fail to verify the binding between
the access token and the uid, their servers only check the va-
lidity of the access token and return user resources according
to the uid, even if the uid does not match the one bound to
the access token. A malicious RP app can exploit this flaw
by modifying the user id in the resource request to obtain
other users’ resources without authorization.

4.2 RP Misuse

4.2.1 Login Stage
Most RP apps prefer to use WebView as the user-agent, in

case the SP app is not installed in the Android device. Of all
the 1,372 apps incorporating OAuth service, 1,182 (86.2%)

of them support to use WebView as the user-agent. Howe-
ver, most of these RP apps fail to validate the certificate
used in the SSL connection. Meanwhile, RP apps installed
in the Android device are potentially repackaged malicious
apps downloaded from untrusted third-party markets, the
RP app authentication cannot be accomplished when Web-
View plays the role of the user-agent, as the developer’s key
hash can only be achieved by a native app. If an SP app
is used as the user agent, the malicious RP app may fail in
the RP app authentication. Even if some SPs ignore the RP
app authentication, the malicious RP app can simply get
the authorization code or access token, rather than the user
credentials. While in the case of the WebView user-agent,
the malicious RP app can obtain the user credentials and
bring more threats.

The RP app is also responsible to verify the identity of
the SP app, it can perform the validation in the same way
as the SP app authenticates the RP app. If the validation
fails, RP app should stop the login operation and provide
visual feedbacks to the user. However, no RP app verifies
the identity of the SP app in our investigation.

4.2.2 Authorization Stage
We use AuthDroid to analyze the 1,372 apps incorpora-

ting OAuth service, 946 of them contained suspicious strings
which are likely to be the app secret. To exclude the false po-
sitives, we implement a client to simulate the OAuth autho-
rization. A suspicious string and the corresponding app id
is used as the app id/secret pair in the authorization code
grant to exchange for the access token, the false positives
are ruled out based on the server responses. As the autho-
rization code in the authorization grant can only be used
once, we utilize the Robotium [4] framework to help perform
the authorization process automatically, so as to obtain the
authorization code for each test. Finally, we got 383 (27.9%)
apps containing app secrets, including six apps sharing the
same app secret for Sina Weibo, and two sharing the same
app secret for Tencent Weibo and QQ. Most of the false
positives are hard-coded keys used in other cryptographic
algorithms, it remains a challenge to distinguish them from
the app secret, as the app secret appears to be completely
meaningless just like the cryptographic keys.

For those RP apps who avoid hard coding the app secret,
the key management can be insecure as well. We analyzed
the top 100 apps from a third-party market, and find an
app named Hupu Jogger (install base between 6,000,000 and
9,000,000) sets the secret file permissions incorrectly and
leaks the app secrets and OAuth credentials.

Even if the RP developers obey SPs’ specifications stric-
tly, the resulting apps may be insecure as well. The SDKs
and documents provided by the SPs may have security flaws
as discussed in previous sections and in Wang et.al’s study
in [18]. RP developers are supposed to avoid using the inse-
cure implementations provided by SPs, otherwise the secu-
rity flaws in the insecure implementations will be inherited.
85 of the top 100 apps incorporate Sina Weibo’s OAuth ser-
vice, we evaluate these apps to figure out how RPs misuse
SPs SDKs. The vulnerabilities exist in the RPs are shown
in Figure 4.

4.2.3 Resource Access Stage
Figure 5 depicts the top 100 apps’ support for OAuth

authentication and authorization when using different SPs.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

V1 V2 V3 V4

N
u
m

b
e
r

o
f
A

p
p
s

Figure 4: RPs’ misuse of Sina Weibo’s SDK

OAuth was designed for authorization. Even though it’s
likely to use OAuth to build an authentication protocol,
OAuth is not an authentication protocol in nature. During
the process of authentication, RP needs to know who the
current user is and whether or not he is present. Unfortuna-
tely, OAuth tells RP none of that. Access token is designed
to be opaque to the relying party. RPs may trade the access
token for a number of attributes (e.g. a unique identifier)
about the user to know who he is, but these attributes can-
not prove the user’s presence with the RP app. We study
how RPs authenticate users using OAuth as the base and
whether they make the common mistakes described in [9].

 0

 10

 20

 30

 40

 50

 60

 70

 80

SinaW
eibo

Q
Q

W
echat

TencentW
eibo

R
enren

Alipay

Taobao

Baidu

Q
zone

D
ouban

Kaixinw
ang

YoudaoN
ote

Yixin
Laiw

ang

Evernote

N
u
m

b
e
r

o
f
A

p
p
s

Authentication
Authorization

Figure 5: The numbers of apps using the SPs to
conduct authentication or authorization

Sina Weibo’s OAuth service is the most popular service
used for authentication as shown in Figure 5. We take Sina
Weibo for example and analyze the 85 RP apps incorpora-
ting Sina Weibo’s OAuth service. In our investigation, RPs
prefer to use signature, access token, authorization code,
user id or some other parameters as authentication proof.
Figure 6 illustrates the situation. 31 (36.5%) RPs made
mistakes when using OAuth for authentication, most RPs
neglect to take transport security measures to protect the
authentication process.

13 (17.81%) of them use access token as the authentica-
tion proof, and the access token is transmitted in a plaintext

in the authentication request. It is nature to assume that
the access token can be used as the proof of authentica-
tion, as the access token is usually issued after a user being
authenticated by the SP server. However, that’s not the
only way to obtain the access token. Refresh tokens can be
used to obtain access tokens as well, a refresh token is issued
to the RP app by the SP server to obtain a new access to-
ken before the current access token expires, this process can
proceed without user intervention. In this method, as the
access token cannot be parsed or understood by RPs, RPs
may trade the access token for user’s attributes to identify
the user. Even so, the attributes cannot tell whether the
user is present or not.

Figure 6: Authentication proof

14 (19.12%) RPs use user id along with the access token
to authenticate users, and the access token is transmitted
without protection. This is similar to the former one, but if
the SP suffers from Vulnerability V, an attacker can modify
the user id in the authentication request to login to other
users’ RP account without authorization. Sina Weibo is
such an SP.

There are other seven RPs use the authorization code to
authenticate users. As the authorization code can only be
used once, RP servers can exchange the authorization code
for an access token, an authorization code is useless to an
attacker if he is not aware of the app secret. Moreover, the
authorization code is short-lived, such an authentication can
only be accomplished when the user is present.

Considering the complexity of the OAuth protocol and the
lack of expertise among Android app developers in general,
service providers are supposed to provide standard solutions
to use OAuth for authentication. They can design APIs
that are more intuitive and easier to use, to minimize the
emergence of such vulnerabilities.

4.3 MBaaS
As each of the OAuth services provided by SPs has its

own API that must be individually incorporated into an
RP app, it is a time-consuming and complicated process
for app developers. Many developers utilize Mobile Bac-
kend as a Service (MBaaS) to simplify the incorpora-
tion. MBaaS provides mobile app developers with a way to
link their applications to backend APIs while also providing
features such as user management, push notifications, and
integration with social networking services. These services
are provided through customized SDKs and APIs.

We examined three popular MBaaS platforms in China,
including Umeng, ShareSDK and Frontia. All of their im-

plementations exist some vulnerabilities. Umeng is used by
more than 420,000 apps, and 60,144 apps incorporate Sha-
reSDK ’s service. Both of them support all Chinese social
platforms and major international ones: QQ, Sina Weibo,
Wechat, Facebook, Twitter, etc. However, they provide in-
correct specifications and poor secret management. Umeng
guides developers to hard code app id/secret for some SPs in
the integration codes, and ShareSDK requires users to store
all app id/secret pairs in a configuration file named “sha-
resdk.xml”. Under the circumstances, an attacker can obtain
the app secrets easily by performing static analysis for the
RP apps. Frontia is an MBaaS platform owned by Baidu, it
supports OAuth services provided by Sina Weibo, Tencent
Weibo, Qzone, etc. Instead of hard-coding app secrets in the
application, Frontia requires developers to mandate secrets
to an application created on the Baidu platform. The secret
escrow method adds a new participant in the OAuth flow
and complicates the secret management issue, which may
expand the attack surface.

4.4 Case Study
While a single vulnerability may not appear to pose a

significant threat, a combination of different participants
with different vulnerabilities may allow attackers to seriously
compromise an OAuth transaction. For example, assume
that an RP’s OAuth implementation suffers from Vulnera-
bility IV, an attacker is unable to exploit this vulnerability
to impersonate the RP app only if the corresponding SP app
suffers from Vulnerability II, exploit can be constructed in
combination with these two vulnerabilities. In the following,
we present two typical cases exploiting combinations of vul-
nerabilities to attack OAuth transactions.
Case #1: Sina Weibo & Phoenix News

The first case involves Sina Weibo, the most popular social
network application in China with around 280 million active
users, and Phoenix News, a famous news application with
more than 100 million downloads. In this case, Sina Weibo
is the SP and Phoenix News is the RP. Phoenix News relies
on Sina Weibo to authenticate users.

In our investigation, during the login stage, the server of
Sina Weibo responses the login request with user’s basic in-
formation as well as the access token. As the login request
is transmitted in HTTP (with the password encrypted in-
dependently), the access token is returned in plaintext. In
the resource access stage, the Phoenix News app returns the
obtained user id and access token in plaintext to its server
to authenticate the user, which are exactly the ones in Sina
Weibo’s login response.

Sina Weibo exposes two security problems in our assess-
ment: a) it returns access token before user’s authorization
and transmits it without protection; b) the same access to-
ken is issued to different RP apps, which means that the
access token is not bound to RP app when OAuth is used
for authentication, any RP app with the access token could
access user’s protected resources without authorization. For
Phoenix News, it suffers from Vulnerability VI in this pro-
cess as it uses an incorrect method to authenticate user.

Based on these vulnerabilities, we have constructed an
attack that uses the Sina Weibo account to login to other
RP apps to obtain the same access token as the one obtained
by the Phoenix News, and utilize the access token to login
to Phoenix News without victim’s authorization. We have
reported this flaw to both apps’ manufacturers and the flaw

has been patched now.
Case #2: Renren & Hupu Jogger
The SP in this case is Renren, a Facebook-like social network
application with 83 million active users, and the RP is Hupu
Jogger, a popular sports app in China.

When using the Renren account to login to Hupu Jog-
ger, during the authorization stage, Hupu Jogger obtains the
app id/secret from its back-end server and stores them in a
shared preferences file named hupurun.xml, which is global-
readable and can be accessed by any other app installed in
the same device. And in the resource access stage, when
Hupu Jogger attempts to access user’s protected resources,
Renren returns information according to the submitted user
id.

In this case, Hupu Jogger stores the secrets incorrectly
as it set the wrong file permission of the shared preferences
file, and Renren fails to validate the binding between the
access token and the user id, anyone can access a specific
user’s protected resources by submitting the user id and an
unrelated valid access token.

The combination of these vulnerabilities may allow attac-
kers to gather sensitive information of many different users
without authorization. A malicious third-party app could
attempt to read from the shared filesystem on the device to
obtain the app id/secret of Hupu Jogger, then the malici-
ous app is able to impersonate Hupu Jogger to interact with
Renren. In this way, the attacker can modify the user id in
the resource request during the resource access stage and re-
plays the request to Renren to gather sensitive information
corresponding to the modified user id.

5. RELATED WORK
A large body of recent work [6, 7, 11, 14, 15, 16, 17, 18,

19] has sought to discover various attacks against OAuth
implementations. Wang et al. studied the security-critical
logic flaws in commercial Web SSO systems that can totally
defeats the purpose of authentication [17]. Sun et al. per-
formed a security analysis through empirical examinations
of real-world SP and RP implementations and uncovered se-
veral critical vulnerabilities that allow an attacker to gain
unauthorized access to the victim user’s resource [16]. Ho-
makov highlighted some of the security flows in Facebook’s
OAuth 2.0 implementation and Google Chrome that enable
an attack on user’s OAuth secrets [7]. While much of the
prior work focuses on the security of OAuth implementati-
ons on Web platforms, our work aims to analysis the security
problems which may arise when implementing OAuth on the
Android platform.

The issues with OAuth implementations in the mobile en-
vironments have been studied by several others. Chen et
al.’s work revealed that mobile platforms significantly differ
from the Web and pinpointed the key portions in OAuth
protocol flows that are confusing for mobile application de-
velopers [6]. Wulf showed stealing passwords is easy in na-
tive mobile apps despite OAuth [5]. McGloin et al. con-
cluded the OAuth 2.0 threat model and security considera-
tions, they warned the risk of using an embedded browser
in the end-user authorization process [11]. Unlike previous
studies, our work is not focused on the individual attacks,
but rather the systematical security assessment of OAuth
implementations in Android. While most of the prior work
focuses on the authorization phase, our analysis covers the
entire authentication/authorization process. Apart from the

authorization phase, we take the login stage and the resource
access stage into consideration as well. Meanwhile, we iden-
tify the attack surface of OAuth in Android and summarize
the most severe vulnerabilities in OAuth implementations.

6. CONCLUSION
In this paper, we report a security study of OAuth imple-

mentations in Android applications at ecosystem level. The
study proposes a systematic assessment framwork Auth-
Droid that has detected 6 security vulnerabilities in OAuth
implementations in Android. With AuthDroid, we con-
duct an investigation on 15 major OAuth service providers
and more than 4000 popular apps from the Chinese main-
land app markets. The results demonstrate a higher ratio of
OAuth misuse (86.2% compared with 58.7% of Google Play)
and many complex vulnerabilities due to the combination of
two main factors: the inconsistency between service provi-
der’s design and RFC standard, and the misunderstanding
of developer to the specification of service providers.

7. ACKNOWLEDGEMENTS
We would like to thank our shepherd, Long Lu, and the

anonymous reviewers for their insightful comments that gre-
atly helped to improve the manuscript.

This work was supported in part by the National Key
Technology Research and Development Program of China
under Grants No.2012BAH46B02, the National Science and
Technology Major Projects of China under Grants No.2012-
ZX03002011, and the Technology Project of Shanghai Sci-
ence and Technology Commission under Grants No.1351150-
4000 and No.15511103002.

8. REFERENCES
[1] Androguard. https://github.com/androguard.

[2] BurpSuite. http://portswigger.net/burp.

[3] MitmProxy. https://mitmproxy.org.

[4] Robotium. http://code.google.com/p/robotium/.

[5] Stealing Passwords is Easy in Native Mobile Apps
Despite OAuth. http://goo.gl/QskLq.

[6] Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian,
Robert Kotcher, and Patrick Tague. OAuth
Demystified for Mobile Application Developers. In
Proc. of the 21st ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014.

[7] Homakov E and Labunets A. How We Hacked
Facebook with OAuth2 and Chrome bugs.
http://homakov.blogspot.ru/2013/02/hacking-
facebook-with-oauth2-and-chrome.html.

[8] Sascha Fahl, Marian Harbach, Thomas Muders,
Matthew Smith, Lars Baumgärtner, and Bernd
Freisleben. Why Eve and Mallory Love Android: An
Analysis of Android SSL (In)Security. In Proc. of the
19th ACM Conference on Computer and
Communications Security (CCS), 2012.

[9] Nir Goldshlager. End User Authentication with OAuth
2.0. http://oauth.net/articles/authentication, 2013.

[10] Internet Engineering Task Force (IETF). The OAuth
1.0 Protocol (RFC 5849), 2010.

[11] Internet Engineering Task Force (IETF). OAuth 2.0
Threat Model and Security Considerations (RFC
6819). 2013.

[12] Internet Engineering Task Force (IETF). The OAuth
2.0 Authorization Framework (RFC 6749), 2013.

[13] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and
Heng Yin. Attacks on WebView in the Android
system. In Proc. of the 27th Annual Computer
Security Applications Conference, 2011.

[14] Ryan Paul. Compromising Twitter’s OAuth Security
System. Technical report, Ars Technica, 2010.

[15] Ethan Shernan, Henry Carter, Dave Tian, Patrick
Traynor, and Kevin R. B. Butler. More Guidelines
Than Rules: CSRF Vulnerabilities from Noncompliant
OAuth 2.0 Implementations. In Proc. of the 12th
Detection of Intrusions and Malware, and
Vulnerability Assessment International Conference
(DIMVA), 2015.

[16] San-Tsai Sun and Konstantin Beznosov. The Devil is
in the (Implementation) Details: An Empirical
Analysis of OAuth SSO Systems. In Proc. of the 19th
ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2012.

[17] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing
Me onto Your Accounts through Facebook and
Google: A Traffic-Guided Security Study of
Commercially Deployed Single-Sign-On Web Services.
In Proc. of the 33rd IEEE Symposium on Security and
Privacy (SP). IEEE, 2012.

[18] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer,
David Evans, and Yuri Gurevich. Explicating SDKs:
Uncovering Assumptions Underlying Secure
Authentication and Authorization. In Proc. of the
22nd USENIX Security Symposium, 2013.

[19] IETF OAuth WG. OAuth Security Advisory: 2009.1.
http://oauth.net/advisories/2009-1/.

[20] Yuchen Zhou and David Evans. SSOScan: Automated
Testing of Web Applications for Single-Sign-On
Vulnerabilities. In Proc. of the 23rd USENIX Security
Symposium, 2014.

