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Abstract. The public key cryptographic algorithm SM2 is now widely
used in electronic authentication systems, key management systems, and
e-commercial applications systems. As an asymmetric cryptographic al-
gorithm is based on elliptic curves cryptographic (ECC), the SM2 algo-
rithm involves many complex calculations and is expected to be suffi-
ciently optimized. However, we found existing SM2 implementations are
less efficient due to the lack of proper optimization. In this paper, we
propose Yog-SM2, an optimized implementation of SM2 digital signature
algorithm, that uses features of modern desktop processors such as ex-
tended arithmetic instructions and the large cache. Yog-SM2 utilizes new
features provided by modern processors to re-implement functions of big
number arithmetic, prime field modular, elliptic curve point calculation,
and random number generation. The use of these new hardware features
significantly improves the performance of both SM2 signing and verify-
ing. Our experiments demonstrated that the execution speed of Yog-SM2
exceeds four mainstream SM2 implementations in state-of-the-art cryp-
tographic libraries such as OpenSSL and Intel ippcp. In addition, Yog-SM2
also achieves a better performance (97,475 sign/s and 18,870 verify/s)
against the OpenSSL’s optimized implementation of ECDSA-256 (46,753
sign/s and 16,032 verify/s, OpenSSL-1.1.1b x64) on a mainstream desk-
top processor (Intel i7 6700, 3.4GHz). It indicates that SM2 digital sig-
nature is promising in a widespread application scenarios.
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1 Introduction

Issued by the State Cryptography Administration of China on December 17th,
2010, SM2 public key cryptographic algorithm is an asymmetric cryptography
algorithm based on elliptic curves cryptography (ECC) and can be used to im-
plement digital signature algorithm (DSA), key exchange protocol, and public
key encryption. Later, SM2 digital signature algorithm was officially defined as
an international standard in ISO/IEC14888-3/AMD1 on November 3rd, 2017. In
reality, SM2 has been widely adopted in various application scenarios especially
for financial industries (e.g., the bank transaction system [7]), industrial systems
(e.g., PetroChina [2]), blockchain [8], and data protection (e.g., video conference
program [13]).

Theoretically, elliptic curve based digital signature algorithms not only achieve
a better security but also requires a smaller storage compared to the RSA digital
signature algorithm. Thus, existing software products are recommended to up-
date their crypto components in using such digital signature algorithms such as
SM2DSA (SM2 Digital Signature Algorithm) and ECDSA (Elliptic Curve Dig-
ital Signature Algorithm). However, this implementation scheme significantly
affects the actual execution speed of digital signature algorithms in real-world
crypto libraries. For SM2DSA, it is generally more complex than the state-of-
the-art ECDSA due to its structure and chosen parameters. In response, a series
of researches [30, 36–38] focus on improving the performance of SM2DSA. Pre-
vious researches [32, 39] mainly study how to optimize SM2 at the hardware
level. From the perspective of software optimization, Gueron et al. [29] aimed
at optimizing two crucial operations–point-addition (PA for short) and point-
doubling (PD for short) by implementing them in different coordinates. A more
comprehensive work introduced by Brown et al. [28] is to optimize PD operation
in Jacobian coordinates, PA in mixed Affine-Jacobian coordinates, fixed-point
scalar multiplication by comb method with two tables, and free-point scalar mul-
tiplication by window NAF (non-adjancent form) method.

Unfortunately, we observed that seldom research considers how to exploit
features of modern processors (e.g., instruction set extensions of Intel core and
AMD Ryzen) to improve the execution speed of SM2DSA, although such features
have being utilized by many state-of-the-art cryptographic libraries to achieve
a highly-optimized version of ECDSA. For instance, in the latest OpenSSL (i.e.,
OpenSSL-1.1.1+), the optimized version of ECDSA executes three times faster
than the compatible version (i.e., the one without involving new features of pro-
cessors), and 23 times faster than its SM2DSA implementation (i.e., the one
without involving new features of processors). If similar features of modern pro-
cessors can be utilized by SM2DSA, the performance is expected to be improved
significantly.

In response, in this paper we propose Yog-SM2, an optimized SM2DSA imple-
mentation by utilizing various hardware features of modern desktop processors.
In detail, Yog-SM2 customizes functions of big number arithmetic, modular
operations, scalar multiplication, and random number generator using
extended arithmetic instructions provided by cutting-edge processors. Through
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applying such hardware based optimizations, Yog-SM2 achieves a considerable ex-
ecution speed (97,475 sign/s and 18,870 verify/s) against its counterpart ECDSA
of OpenSSL-1.1.1b x64 (46,753 sign/s and 16,032 verify/s) on an Intel i7 6700
processor. Moreover, Yog-SM2 outperforms four mainstream implementations of
SM2DSA in state-of-the-art open source cryptographic libraries. To the best
of our knowledge, Yog-SM2 is the most efficient SM2DSA implementation with
nowadays desktop processors.

In summary, this paper achieves the following three contributions:

– We built Yog-SM2, a processor level optimized SM2DSA implementation.
It fully utilizes various features of modern processors and thus significantly
reduces the execution overhead of both signature and verification.

– Yog-SM2 re-implement many low-level functions such as a novel fixed-point
scalar multiplication scheme which only consumes 31 PA operations to im-
plement a 256-bit scalar multiplication for a specify base point on target
elliptic curve, and a specific random number generator with only 82 instruc-
tions executed. This guarantees that Yog-SM2 is highly compact and efficient.

– Yog-SM2 not only outperforms existing SM2DSA implementations but also
ECDSA implementations. The design and implementation of Yog-SM2 are
expected to help designers of cryptographic algorithms to optimize other
ciphers especially public key ciphers.

2 Background

2.1 SM2 Implementation

SM2 is an elliptic curve public key cryptographic algorithm issued by Chinese
State Cryptography Administration on December 17th, 2010 [12]. Later, it was
officially included in ISO/IEC14888-3/AMD1 on November 3rd, 2017. SM2 can
be used for key-exchanging, data encryption and decryption, digital signature
and verification [19–23]. In this paper, we only focus on digital signature.

To implement a SM2DSA algorithm, a series of complex calculations with
both big numbers and elliptic curves are required. In practice, a typical imple-
mentation of SM2 requires the following functions as illustrated in Figure 1. In
the following, we introduce key functions in SM2 implementation:

– Big Number Arithmetic Functions: Big number arithmetic functions are
fundamental for SM2. Those functions perform the basic arithmetic calcula-
tion (e.g., add, mod) of big number (e.g., 256-bit). Cryptographic libraries
(e.g., OpenSSL [17] and Botan [5]) often implement their own big number
arithmetic functions, or refer to some big number library such as the GNU
MP (GMP) Bignum Library [9]. They usually support any length of big
number for compatibility.

– Prime Modular Functions: Prime modular functions implements the op-
erations of modular multiplication, modular square, modular inversion, etc.
In addition, modular operations are usually used with arithmetic operations.
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Fig. 1. Overview of SM2DSA algorithm

For example, a modular multiplication contains two operations: a multipli-
cation and a modular reduction. Another feature for prime modular func-
tions is that they will be involved when we convert a point from Jacobian
coordinates to Affine coordinates. Note that most modular functions are
time-consuming operations and thus directly influence the performance of
both signature and verification functions.

– Elliptic Curve Functions: As the basic calculation of Elliptic Curve points,
the PA and PD operations are basis of the elliptic curve point scalar mul-
tiplication. Scalar multiplication is classified to two types: fixed-point scalar
multiplication and free-point scalar multiplication. Fixed-point scalar multi-
plication is used in both signature function and verification function, while
free-point scalar multiplication is only used in verification function.

– Random Number Functions: The generation of an SM2 digital signa-
ture requires a random number to prove its security. To obtain a secure
random number, traditional implementations usually need to collect infor-
mation about the current environment to first generate a seed with high
entropy, and then use a pseudo random number generator (PRNG) to ex-
tend the seed to a random number (e.g., 256-bit).

In addition to those functions, most SM2 implementations would provide
high-level sign and verify interfaces to help generate digital signatures as well
as verify them.
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2.2 Features of Modern Processors

Modern processors (e.g., Intel CPUs with Skylake or CoffeeLake micro-architecture)
introduces a plenty of new instruction set extensions and hardware features to
boost the executions of different programs. First, most modern processors obtain
multiple 64/128/256-bit registers and large caches (e.g., 8M L3 cache). These
features allow software to load more data into cache and registers to perform
complex computation. Especially for vector computation (e.g., multimedia pro-
cessing technology) and cryptographic algorithm, and those new features can
efficiently accelerate their processing procedure and speed the performance of
application. Second, each generation of mainstream processors often introduce
new instruction set extensions. Except the basic x86/64 instruction set, the lat-
est generation of Intel Core processor (i.e., codename Coffee Lake) contains
30 instruction extensions (MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA3,
F16C, BMI, BMI2, VT-x, VT-d, TXT, TSX, RDSEED, ADX, PREFETCHW,
CLFLUSHOPT, XSAVE, SGX, MPX ). The instruction set extensions cover a
diverse range of application domains and programming usages.

3 Yog-SM2

In this section we present Yog-SM2, a highly-optimized implementation of the
SM2DSA algorithm. Yog-SM2 fully utilizes several features of modern proces-
sors such as Intel Core and AMD Ryzen, and achieves a considerable perfor-
mance increase in comparison with its counterpart (i.e., the optimized ECDSA
in OpenSSL). In detail, Yog-SM2 leverages both new instruction extensions of
modern processors and hardware characteristics (e.g., larger cache) to optimize
functions of big number arithmetic, modular operations, scalar multi-
plication, and random number generator. In addition, Yog-SM2 adopts a
redundant instruction removal policy to implement instruction-level effi-
cient operations. In the following, we elaborate how Yog-SM2 implements each
optimization.

3.1 Optimization Strategies

Extended Arithmetic Instructions Since the calculations of elliptic curve in-
volves a large number of arithmetic operations, Yog-SM2 utilizes extended arith-
metic instructions to boost the execution (see Section 3.2 and 3.3). In detail,
Yog-SM2 utilizes three instructions including mulx, adcx and adox. Table 1 gives
a detailed descriptions about the mentioned instructions. These instructions are
alternative versions of existing x86 instruction (mul, and adc) and fulfil the op-
erations of multiple and addition, respectively. However, these three instructions
are designed to support two separate carry chains and thus are used to speed up
large integer arithmetic [34]. For instance, the mulx instruction does not affect
any flag when executing, and the operating results can be saved in any common
registers, which is more convenient than the original mul instruction. Moreover,
this instruction does not overwrite the source operands.
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Large Capacity On-chip Storage Nowadays processors often carry larger
cache (e.g., 16MB L3 cache) and registers with 64 to 512 bits. These features
are leveraged to optimize our Yog-SM2. First, Yog-SM2 adopt a large look-up
table (i.e., 512KB) to accelerate the computation of fixed-point scalar multipli-
cation (see Section 3.4). The look-up table contains 8,192 elliptic curve points in
Affine coordinates. Traditionally, this occurs a frequent memory access and may
introduce performance penalty. However, on modern processors the use of this
table benefits from the large cache. Second, since most modern processors sup-
port 64-bit registers, the arithmetic operations in Yog-SM2 are fully optimized
using 64-bit instead of 32-bit registers. In this way, the calculation is sufficiently
boosted.

Table 1. Extended instructions used by Yog-SM2 to optimize arithmetic operations

Instruction Instruction set Description

mulx r64a, r64b, r/m64 BMI2
Unsigned multiply of r/m64 with RDX

without affecting arithmetic flags.

adcx r64, r/m64 ADX
Unsigned addition of r64 with CF,

r/m64 to r64, writes CF.

adox r64, r/m64 ADX
Unsigned addition of r64 with OF,

r/m64 to r64, writes OF.

3.2 Big Number Arithmetic Optimization

To optimize the big number arithmetic, we fully utilized 64-bit registers and the
extended arithmetic instructions in modern processors.

Big Number Multiplication When preforming big number multiplication
c = a ∗ b (a, b and c are 256 bits number), Yog-SM2 separates the multiplication
procedure into several rounds with each round calculate a[i]∗b[j] (i and j between
0 and 3, and each a[i] or b[j] is 64 bits and store in a single 64-bit register). In each
round, Yog-SM2 first performs a multiplication operation with mulx instruction,
followed by a serial of addition operations with adcx or adox instruction. Those
serial addition operations are to add the product that the mulx instruction
produces to the final result c. By using new instructions, only the CF flag or
OF flag would be affected, and thus the overhead is much lower.

Big Number Modular When performing modular operation, Yog-SM2 does
not use the traditional “conditional subtraction” method (e.g, calculating c =
a mod b to judge the condition a > b, if satisfied, performs a subtraction).
Instead, it uses a non-branch and sequential execution method to execute the
modular subtraction. The idea for non-branch and sequential execution benefits
from two instructions: cmovz and cmovnz [6]. These two instructions are the
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variants of mov instruction which performs different actions (e.g., move data or
not) according to the zero flag ZF of EFLAGS register. By utilizing these instruc-
tions, we avoid the penalty of execution prediction failure and thus make better
use of the CPU resources.

Another optimization for modular operation is to merge it with other op-
erations. Aiming at higher performance, merging modular operation with other
operations could reduce unnecessary instructions as well as extra memory ac-
cesses. For example, Yog-SM2 implements a big number modular addition oper-
ation modAdd instead of two separated functions (a modular operation and a
addition operation). When it is frequently invoked, the cost of function call and
return is reduced from twice to once.

3.3 Modular Operation Optimization

The implementation of Yog-SM2 adopts optimized modular multiplication and
modular inversion, which benefit from the extended arithmetic instructions.
Moreover, we improve the Montgomery modular multiplication by integrating
multiplication operation into modular operation to reduce memory access oper-
ations and increase the efficiency of register usage. At the same time, we inline
all sub functions of modular inversion to accelerate its procedure.

Modular Multiplication We optimized the traditional Word-by-Word Mont-
gomery Friendly Multiplication (WW-MF ) algorithm used in modular multipli-
cation with the mulx, adcx, and adox instructions. For two 256-bit numbers a and
b (both can be saved by four 64-bit registers), the calculation of multiplication
can be divided into four rounds:

1. Calculate a ∗ b[0], (b[0] is the less signification 64 bits of b)
2. Calculate a ∗ b[1],
3. Calculate a ∗ b[2],
4. Calculate a ∗ b[3], (b[3] is the most signification 64 bits of b)

Here we utilize extended arithmetic instructions to fulfil the multiplication and
addition operations. Moreover, we notice that the original WW-MF algorithm is
first to calculate the multiplication of a and b, storing the result into a temporary
512-bit variable T (which costs eight registers to store it), and then to reduce T
from 512 bits to 256 bits by four rounds. In order to optimize the use of registers,
we customized this algorithm to integrate four rounds of multiplication operation
with four rounds of reduction operation. In other words, we perform one round
of reduction operation after one round of multiplication operation. By this way,
only six instead of eight registers are needed to save the intermediate results.
Moreover, since the modular P used by SM2 is a Montgomery friendly modular
(satisfying −P−1mod 2s = 1, s is the word size of current machine, in our
environment, s = 64), the reduction steps can be further optimized from five
steps to four steps.
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Modular Inversion To optimize the modular inversion operation of SM2DSA,
we re-implement big number (256-bit) shift-left, shift-right, addition, and sub-
traction functions, which are used by the Almost Montgomery Inversion [35]
(AlmMonInv for short) algorithm, a core algorithm for modular inversion (Alm-
MonInv algorithm is used to support both modular N inversion operation and
modular P inversion operation, where N is the order of the base point G in el-
liptic curve and P is the prime number). We re-implement those functions with
adcx and adox instructions, and inline all sub function in modular inversion to
avoid function call and unnecessary memory access operations. In this way, the
modular inversion operation is significantly optimized.

3.4 Scalar Multiplication Optimization

The optimization of scalar multiplication is divided into two steps: we first gen-
erate a look-up table for fixed-point scalar multiplication and reduce the com-
plexity to only 31 PA operations; then we use an adaptive window NAF method
to determine the best window for free-point scalar multiplication.

Fixed-Point Scalar Multiplication We proposed a look-up table based fixed-
point scalar multiplication that reduces the complexity to exactly 31 PA opera-
tions for a 256-bit scalar. The signing of SM2 requires a product of G (the base
point of the elliptic curve of SM2 algorithm) with a 256-bit random scalar k.
By splitting k into 32 bytes (k = (k31, ..., k0)) and pre-computing 256 possible
elliptic curve points Pi = ki ∗ 28i ∗ G, we generate 8,192 pre-computed points
as a look-up table. Note that it consumes less storage space to represent the
elliptic curve point in Affine coordinates than in Jacobian coordinates (i.e., 64
bytes for one point). Our table stores each elliptic curve point using the Affine
coordinates. In total, the size of the look-up table is 512 KB.

When the signing process needs to compute k * G for arbitrary k, it inquires
the look-up table according to certain value of ki and directly obtains the point
Pi. Then it only conducts 31 PA operations to add these pre-computed points to
get the result of k * G. As a result, we speed up the SM2 algorithm substantially.

Free-Point Scalar Multiplication We found that traditional window method
wNAF to optimize the free-point scalar multiplication fails to set the most opti-
mized parameter (i.e., the window size w) for different processors. In Yog-SM2,
the best value of w is determined at runtime. Yog-SM2 will choose different value
of w used by wNAF and find the best one. In detail, Yog-SM2 evaluate the fol-
lowing runtime metrics–modular multiplication, modular square, and modular
inversion. For instance, on a platform with Intel i7 6700 (3.4GHz) processor, the
result shown in Table 2 demonstrates that Yog-SM2 should set w to 3 to obtain
the best performance. In comparison, GmSSL [10] and Intel-ippcp [11] both adopt
a wNAF with fixed w = 5, which are not adaptive to various processors.
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Table 2. Performance of wNAF method for different window

Window w
Complexity

Running-time (us)
M S I

2 1,712 1,282 - 47.85

3 1,551 1,224 1 45.36

4 1,477 1,196 3 46.66

5 1,449 1,185 7 56.02
-

M : modular multiplication; S: modular square; I: modular inversion.

3.5 Random Number Generator

Random number is crucial to SM2 algorithm. During an SM2 signing, it needs a
256-bit random k to help compute the signature. In addition, the random num-
ber generator is also used to generate the private key for the digital signature.
We observe that generating a random number is usually time-consuming. Tradi-
tionally, to generate a (pseudo) random number, a large number of information
about the current environment (e.g., memory usage statistics, current process
ID, system performance counter, etc.) is collected. Hence, a software pseudo
random number generator often executes tens of thousands of instructions to
generate a random number.

To optimize the generation of random number, Yog-SM2 utilizes the Intel
RDRAND hardware instruction [24] to generate random number for SM2 Sign-
ing. RDRAND is an instruction to obtain random numbers from an on-chip
hardware random number generator. It is part of the Intel 64 and IA-32 in-
struction set architectures and is available in Intel Ivy Bridge processors and
the successors. AMD also added support for the instruction in June 2015. By
using this feature, Yog-SM2 only needs to execute 82 instructions (including the
RDRAND instruction) to get a 256-bit random number securely.

3.6 Redundant Instruction Removal

We observe that the implementation of PD and PA functions contain many re-
dundant instructions. We can remove those unnecessary instructions and thus
significantly improve the performance. Figure 2 demonstrate a concrete example
of redundant instruction removal. In Figure 2(a) the function foo follows the
convention of parameter passing follows the Windows x64 Application Binary

Interface (Windows x64 ABI) standard [3]. However, its function prologue (top
box in dashed line) and function epilogue (bottom box in dashed line) are redun-
dant and can be removed. Usually, function prologue and epilogue are necessary
to save and restore the execution context of the caller at the invoking site. In
our case, however, if the caller and the callee function (i.e., ( foo)) DO NOT
share registers and stacks. we can remove those unnecessary function prologue
and epilogue to reduce memory accesses and thus significantly improve the per-
formance.
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1. foo PROC PUBLIC
2. push r12
3. push r13
4. sub rsp 8
5. mov r12, rcx
6. mov r13, rdx
7. add r12, r13
8. mov rax, r12
9. add rsp 8
10. pop r13
11. pop r12
12. ret
13. foo ENDP

1. foo PROC PUBLIC
2. mov r12, rcx
3. mov r13, rdx
4. add r12, r13
5. mov rdi, r12
6. ret
7. foo ENDP

(a) Original function (b) Optimized function

Fig. 2. Function prologue and epilogue comparison in assembly form

Figure 2(b) shows the optimized form of the original function. The memory
access operations (instructions in the box with dashed line) are removed in the
optimized version while the functionality is equivalent to the original version.
Note that this redundant instruction removal only works if certain requirements
are satisfied: 1) Except for RSP and RIP registers, all other registers are inher-
ently volatile in callee functions (e.g., function foo). The optimized convention
gives the callee functions the ability to use any common registers without stor-
ing them in function prologue and restoring them in function epilogue. 2) All
common registers (except RSP and RIP registers) should be saved in callers
(functions who call the foo). Only by this way can we use all registers in callee
functions freely. 3) The way to pass parameters is different from the original
convention. Fortunately, in our SM2 implementation the PD and PA functions
are suitable for applying such instruction removal. As a result, Yog-SM2 could
benefit from a more compact version of primitive functions.

4 Evaluation

To evaluate Yog-SM2, we first analyzed its computation complexity and then
tested its actual execution performance. For computation complexity, we
counted numbers of executed modular multiplication (M ), modular squaring
(S ), modular inversion (I ), and division (D). For execution performance, we
counted instructions executed for signing and verifying, respectively. In addition,
we compared the performance of Yog-SM2 to that of other four libraries including
GmSSL, OpenSSL, Botan, and Intel-ippcp.

Our experiments were conducted on a workstation with an Intel core i7 6700
processor (3.4GHz), 16GB DDR4 memory, and 512GB SSD. The operating sys-
tem is Windows 7 (x64) and the compiler to generate binary code is Visual C++
2015.



Title Suppressed Due to Excessive Length 11

Table 3. Complexity analysis of popular SM2 implementations

Library
Sign Verify

M S I D M S I

GmSSL-2.5.0 290 109 2 - 2,061 1,401 1

OpenSSL-1.1.1b 3,871 1,802 1 - 2,641 1,569 1

Botan-2.10.0 903 338 2 - 4,105 2,820 1

Intel-ippcp 2019u3 301 109 2 1 2,049 1,397 1

Yog-SM2 263 97 2 - 1,905 1,333 1

4.1 Complexity Analysis

We first analyzed the computation complexity of SM2 algorithm implemented
in Yog-SM2 and other four mainstream cryptographic libraries. The results are
shown in Table 3. Apparently, Yog-SM2 is the most efficient implementation for
both signature operations and verification operations. Because of the optimized
look-up table, fixed-point scalar multiplication reduces the needed calculations.
To sign a message, Yog-SM2 only required 263 modular multiplication, 97 modu-
lar squaring, and two modular inversion. While performing a signature verifica-
tion, Yog-SM2 proceeded 1,905 modular multiplication, 1,333 modular squaring,
and one modular inversion. We also observed that OpenSSL has the highest com-
plexity for the signature operation. Consider the verification operation, Botan

has the highest complexity. By manually inspected their code, we found the
root cause of such a high complexity: 1) OpenSSL adopts the Montgomery ladder
algorithm [16], a constant time algorithm, to sign messages. This significantly
increases the complexity. 2) Botan uses the Binary algorithm for both free-point
scalar multiplication and fixed-point scalar multiplication in verification. Al-
though code reuse makes the SM2 implementation of Botan more concise, it
raises the computation complexity.

4.2 Execution Performance

We first used the number of executed instructions to evaluate the performance
of different SM2 implementations. Results are depicted in Figure 3. Comparing
with the other SM2 implementations, Yog-SM2 averagely executed only 95,189
instructions for each signature operation, and 623,989 instructions for a verifica-
tion operation. The other implementations operated more instructions. Specifi-
cally, the instructions executed by the SM2 implementation of OpenSSL is 63.9
times higher for signing and 7.9 times higher for verification. The low efficiency
might be caused by its applicable security and compatibility for most platforms.

We also noticed that OpenSSL provides a specialized version of ECDSA that
can be used on latest processors. To compare our optimization strategies and
that of OpenSSL-ECDSA, we tested Yog-SM2 against OpenSSL’s optimized im-
plementation of ECDSA-256 on a mainstream desktop processor (Intel i7 6700,
3.4GHz). Yog-SM2 achieves the speed of 97,475 sign/s and 18,870 verify/s against
a 46,753 sign/s and 16,032 verify/s speed of OpenSSL-1.1.1b x64. The result proves
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Fig. 3. Performance comparison of SM2 algorithm for each library

that Yog-SM2 is also scalable to be extended to a specific platform for perfor-
mance improvement.
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Fig. 4. Instruction consumption of each module in Yog-SM2

In order to analyze the instruction composition of Yog-SM2 in detail, we
divided Yog-SM2 into different modules and separately analyzed instruction con-
sumption. Figure 4 describes results of instruction consumption, in which Fig-
ure 4(a) and Figure 4(b) show the consumption of signature instruction compo-
nent and verification component, respectively. For each round of signature, the
random number generator of Yog-SM2 only consumes 82 instructions on aver-
age. The fixed-point scalar multiplication operation contains consumption of PA
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operations, which consumes 66.22% of all instructions, The conversion from Ja-
cobian coordinates to Affine coordinates is also involved whose consumption is
almost the same as the modular inversion operation. To execute the modules in
verification instruction component, on average, fixed-point scalar multiplication
and free-point scalar multiplication executes 10.10% and 86.61% of instructions,
respectively. It is worth pointing out that fixed-point scalar multiplication con-
sumes the same for both signature and verification because branches are not
created if there is no infinity-point (zero point) for fixed-point scalar multiplica-
tion operation.

Comparison of Hardware Improvement To quantitatively measure the ef-
fect of using new features in hardware (i.e., modern processors), we compared
the performance of Yog-SM2 with its compatible version–Yog-SM2/C. To make
Yog-SM2/C be suitable for all platforms without utilizing new features in mod-
ern processors, we replaced all hardware-dependant instructions with compatible
x86 instructions and removed all assembly code. The experiment showed that
Yog-SM2/C only signs 13,079 times and verifies 1,993 times per second, respec-
tively.

Table 4. Instruction consumption of each core module for Yog-SM2/C and Yog-SM2

Module Name Yog-SM2/C Yog-SM2
Percentage of

Instruction Reduction

Modp Sqr 610 185 69.7%

Modp Mult 694 223 67.9%

Modp Inv 107,170 14,391 86.6%

Random Gen 5,492 82 98.5%

Fixed-point Mult 365,068 62,475 82.9%

The comparison result of Yog-SM2/C and Yog-SM2 is shown in Table 4. The
instruction consumption of modular squaring and modular multiplication in
Yog-SM2 reduce 69.7% and 67.9% of instructions while comparing with Yog-SM2/C.
Modular inversion in Yog-SM2 consumes 223 instructions, which achieves 86.6%
reduction of instruction consumption. For the random number generator, we
used BCryptGenRandom provided by Microsoft in Yog-SM2/C and implemented
rdrand provided by Intel in Yog-SM2. As a result, generating a 256-bit ran-
dom number costs 5,492 instructions for Yog-SM/C, but only 82 instructions for
Yog-SM2. In total, Yog-SM2 reduces 98.5% instructions.

We also tested the SM2 implementation of OpenSSL-1.1.1b and found the
similar result. The SM2 implementation of OpenSSL-1.1.1b can only sign 1,988
times and verify 2,326 times per second, respectively. In comparison, the ECDSA-
256 (46,753 sign/s and 16,032 verify/s, OpenSSL-1.1.1b x64) achieves a much
better speed. Without the accelerating of hardware features, SM2DSA can hardly
replace ECDSA in high-performance computation scenarios.
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5 Discussion

Since the core operations in Yog-SM2, including PA operation, PD operation and
all the called sub functions(e.g., modular multiplication, modular square etc.),
were implemented in assembly form, the following optimizations are brought:

– Since the assembly code is not generated relying on source code compilation,
a number of unnecessary instructions are eliminated.

– Redundant instructions such as unnecessary push and pop are removed by
the method redundant instruction removal.

– As the core operations can fully utilize the extensive register resources by
calling new instructions in modern processors in Windows x64 platform, data
transfers are mainly carried in registers to speed up the calculation.

Nonetheless, this implementation also causes a scalability limitation. Because the
assembly code may vary in different platforms, Yog-SM2 is hard to be directly
applied to another platform. For example, the assembly code for Windows cannot
run on Linux directly.

Note that cryptographic libraries (e.g., OpenSSL, Libreswan [14]), that rely on
certain hardware features for cryptographic algorithms acceleration [4,15,18], can
only be applied to block ciphers and hash function. For instance, in OpenSSL, Intel
Advanced Encryption Standard Instructions [1] have been used to accelerate the
AES algorithm, and Intel SHA Extensions [25] are used for SHA1 and SHA-256

algorithms. However, these cryptographic instructions can only be applied to
block ciphers and hash functions. Unlike those cryptographic libraries, Yog-SM2
utilizes a general-purpose hardware feature to optimize public key ciphers.

6 Related Work

SM2 algorithm can be optimized through two aspects, hardware and software.
For SM2 hardware optimization, previous works fucused on implementing SM2
algorithm in FPGA and on ASIC chip respectively. Existing software implemen-
tation mainly concerned about PA and PD operations, modular inversion, and
modular multiplication operations are commonly used instead.

PA and PD operations. M.Brown et al. analyzed the operations PA and PD
in different coordinates. Specifically, they assessed the complexity and running-
time overhead of the fixed-point scalar multiplication with difference implemen-
tations including binary methods, binary NAF methods, window NAF methods,
fixed-based windows methods, and fixed-based comb methods. Nonetheless, new
features in modern processors (e.g., large caches) are not utilized. To speed up
the operations of PA and PD, Gueron et al. converted the point representation
from Affine coordinates to Jacobian coordinates. The operations PA and PD
are carried to Jacobian coordinates, in which the calculations of PA and PD is
faster than those in Affine coordinates.
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Modular inversion optimization. Kaliski et al. [31] proposed a method for
modular inversion in Montgomery domain, which helps modular inversion op-
eration avoid trial of division operation. To improve the efficiency of the above
mentioned Montgomery modular inversion algorithm, both Savas et al. [35] and
Sen Xu et al. [36] proposed optimized algorithms. Savas et al. boosted the sec-
ond phase of the algorithm. Comparing with the original algorithm, the second
phase achieves 6.69 times of increase while giving 160 bits of data and the whole
algorithm improves 1.36 times of increase. Besides, Sen Xu et al. proposed an
efficient constant-time implementation of modular inversion, which relies on the
prime field base on the Fermat’s little theorem. Their implementation improved
89% of the modular inversion operation for 256 bits prime number.

Modular multiplication operations. Montgomery P.L. [33] proposed an al-
gorithm to calculate modular multiplication without trial division. However, the
implementation is not fully optimized. Barrett Paul. [27] proposed Barrett re-
duction algorithm to reduce a number. The above works are further improved
by M.Brown et al.. They proposed an algorithm that is suitable for any modu-
lar without considering whether a number is a prime. However, this algorithm
requires that a product of two numbers are calculated first. The algorithm is
then applied to reduce the product, which is not efficient in our case. Adalier
et al. [26] compared the above mentioned algorithms and concluded that Mont-
gomery modular multiplication algorithm performs the best for 256 bits prime
number. Unfortunately, those algorithms do not fully consider characteristics of
each modular and new features of modern processors.

7 Conclusion

We present Yog-SM2, an optimized implementation of SM2DSA algorithm. Yog-SM2
utilizes features of modern processors such as extended arithmetic instructions
and large cache to fulfil efficient signing and verifying. The evaluation of Yog-SM2
demonstrated that the performance of SM2 signing and verifying boosts signifi-
cantly in modern desktop processors such as Intel core i7 processor. Compared
with state-of-the-art cryptographic libraries, Yog-SM2 also achieves better per-
formance with less instructions executed.
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