APKLancet: Tumor Payload Diagnosis and Purification for
Android Applications

*
Wenbo Yang
Shanghai Jiao Tong University
800 Dongchuan Road
Shanghai, China
talentyang@hotmail.com

Yong Li
Shanghai Jiao Tong University
800 Dongchuan Road
Shanghai, China
1120339057 @sjtu.edu.cn

ABSTRACT

A huge number of Android applications are bundled with
relatively independent modules either during the develop-
ment or by intentionally repackaging. Undesirable behav-
iors such as stealthily acquiring and distributing user’s pri-
vate information are frequently discovered in some bundled
third-party modules, i.e., advertising libraries or malicious
code (we call the module tumor payload in this work), which
sabotage the integrity of the original app and lie as a threat
to both the security of mobile system and the user’s privacy.

In this paper, we discuss how to purify an Android APK
by resecting the tumor payload. Our work is based on two
observations: 1) the tumor payload has its own characteris-
tics, so it could be spotted through program analysis, and 2)
the tumor payload is a relatively independent module so it
can be resected without affecting the original app’s function.
We propose APKLancet, an automatic Android application
diagnosis and purification system, to detect and resect the
tumor payload. Relying on features extracting from ad li-
braries, analytics plugins and an approximately 8,000 mal-
ware samples, APKLancet is capable of diagnosing an APK
and discovering unwelcome code fragment. Then it makes
use of the code fragment as index to employ fine-grained
program analysis and detaches the entire tumor payload.
More precisely, it conducts an automatic app patching pro-
cess to preserve the original normal functions while resect-
ing tumor payload. We test APKLancet by the Android
apps bundled with representative tumor payloads from on-

*All three authors contributed equally to this work.

JrCorresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ASIA CCS’14, June 4-6, 2014, Kyoto, Japan.

Copyright 2014 ACM 978-1-4503-2800-5/14/06$15.00.
http://dx.doi.org/10.1145/2590296.2590314.

Juanru Li*

Shanghai Jiao Tong University ~Shanghai Jiao Tong University

800 Dongchuan Road
Shanghai, China

jarod@sjtu.edu.cn

Junliang Shu

Shanghai Jiao Tong University =~ Shanghai Jiao Tong University

800 Dongchuan Road
Shanghai, China

s.junliang@gmail.com

Yuanyuan Zhang*

800 Dongchuan Road
Shanghai, China

yyjess@sjtu.edu.cn

Dawu GuT

800 Dongchuan Road
Shanghai, China

dwgu@sijtu.edu.cn

line sandbox system. The result shows that the purification
process is feasible to resect tumor payload and repair the
apps. Moreover, all of the above do not require any An-
droid system modification, and the purified app does not
introduce any performance latency.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: (e.g., viruses, worms,
Trojan horses);

General Terms
Security

Keywords

Program analysis; Third-party libraries; Malicious code; An-
droid Security

1. INTRODUCTION

Smartphones such as Android phones are beneficial sup-
plements to stationary computing: online payment, web
surfing, email processing, etc. Being a functional cellular
phone, smartphone maintains the contacts lists, geographic
location, SMS and more, which are directly related to the
user herself. As a result, with the booming of the market
share of these mobile devices, Android attracts great at-
tention of malicious activities that are rapidly increasing.
Android applications are discovered gathering data such as
GPS location, device identifiers, and even user’s identity
without proper notice or authorization from the end user.
The unwanted behaviors, however, are usually introduced by
the bundled third-party libraries or injected malicious code.
These kinds of potentially undesirable third-party code, as
we call tumor payload in this paper, introduce new secu-
rity threat to benign apps and expose the users to privacy
leakage or system compromising.

Typical tumor payload includes not only malicious code
but also some advertising/analytics libraries. Most of the tu-
mor payload choose to bundle with the popular apps which
would bring in more profit for the publisher. The Brightest

Flashlight Free app for Android, which has been downloaded
between 50 to 100 million times, has been secretly sending
location and device data to advertisers|5]. For third-party
ad libraries or analytics plugins that seem to be benign, they
may also introduce potential security breaches. For instance,
ad libraries have been observed the behavior of downloading
code over HTTP and dynamically loading and executing at
runtime without checking the integrity|3]. Attacker may hi-
jack the network and replace the executable with malicious
code.

Due to the fact that Android apps are vulnerable to repack-
aging attack, tumor payload bundling becomes even more
popular. Attackers could simply modify the apps using
sophisticated decompilation tools to inject extra code or
change the user interface through tweaking resource files.
According to Zhou and Jiang’s study[24], about 86.0% of
the malwares they analyzed are repackaged versions of legit-
imate apps with malicious payloads. BitDefender’s survey
on Google Play[1] shows that more than 4,000 apps out of
about 420,000 apps are plagiarized or simply re-engineered
from other app developers, adding new advertising SDK to
original apps for profit. In third-party application market,
the situation is even worse. The experiment in[23] displays
the fact that 5% to 13% of apps hosted on these studied
marketplaces are repackaged. Since bundling tumor payload
with an app is becoming a common phenomenon in Android
ecosystem, tackling the tumor payload is not only the issue
of protecting the secure execution environment of Android
app, or of constraining the undesirable behavior, but also of
protecting the ecosystem of the Android OS.

From the end users point of view, not only do they want
to detect but also to forbid the imposed function (mostly
from the tumor payload) while remaining the expected app
function. Several studies on detecting the tumor payload
have been proposed at module level pairwise comparison and
large-scale analysis|8}, |9} |14} 22]. The issue here is how to
repress the undesirable behaviors and restore a purified app
to its normal status.

A coarse-grained approach is to forbid the unnecessary
permissions that tumor payload has declared. Android OS
grants and controls the permissions to an entire APK, so
the injected tumor payload shares the same privilege that
the original APK has declared. Avoiding declaring unneces-
sary permission could somehow protect the apps from per-
mission abuse by malicious activities, but notice that many
apps provide their own function based on privileged permis-
sions, and the injected code itself could share those permis-
sions to conduct malicious activities, so this method is not
recommended.

There also exist several fine-grained access control ap-
proaches|15, |10l [20] by rewriting the APK and inserting
instrumentation routines to monitor the API invocation and
dynamically applying security countermeasures when detect-
ing threats. We should notice that these countermeasures do
not account for the fact that APK is composed of modules
of equal status but treated as an entire package. So it still
goes to the end user’s judgment call on granting permission
to the ”benign” or “malicious” functions in the APK. This
is a difficult task even for the savvy user with the help of
advanced information flow analysis, not to mention the non-
savvy users who have little knowledge on the mechanism
behind the veil. An alternative approach suggests to iso-
late the unwanted code (typically, the advertising libraries)

and execute it in another process with limited privilege[21,
18| [17]. The advantage is to ensure the function of legally
inserted third-party advertising libraries to bring profit to
developers. The problem is that it commonly requires An-
droid system modification and thus is difficult to implement.

We found that in most cases tumor payload is simply in-
serted as an independent module (otherwise the decompila-
tion and re-compilation process may fail and it will be hard
to be deployed in large scale) in APK files. When executed,
this module runs in a separated work flow and is loosely
relevant to the original work flow. Moreover, the styles of
integration of the tumor payload are limited and usually the
integrating procedure is reversible. Thus, it is able to purify
an app through properly analyzing the way of integration
and precisely locating and resecting the tumor payload.

In this paper we propose APKLancet, a tumor payload
diagnosis and purification system for Android app. AP-
KLancet is an APK rewriting system focusing on resecting
tumor payload (the resecting process is called purification in
this work) and further repairing the purified app after the
resecting. It diagnoses an APK to spot potential tumor code
with tumor payload feature database. Then it partitions the
entire tumor payload with program analysis. Rather than
directly cutting the tumor code off and leaves the normal
function unchanged, APKLancet will automatically detect
the integration style of the tumor payload and correspond-
ingly patches the APK file to prove that it can work properly
after the purification. Finally, APKLancet conducts a verifi-
cation process to assure that the purification does resect the
unwanted behavior, and the operated app is able to work
properly.

The contributions of this work include:

e We conduct a systematic study on the characteristics
of different kinds of tumor payload as ad libraries, an-
alytics plugins and malicious code. This serves as a
first step towards resecting the tumor payload. Based
on this study, we summarize typical integration styles
of the tumor payload. We propose an effective pu-
rification and restoration process that adopts different
strategies to trim the tumor payload and sew the APK
back.

e We build a tumor payload feature database using the
knowledge of ad libraries, analytics plugins and an ap-
proximately 8,000 malware samples to help finding sus-
picious code fragment in the app. The diagnosed sus-
picious code fragment is then used as index to partition
the entire tumor payload from the app using code and
data dependency analysis.

e The proposed APK purification approach directly op-
erates on apps and does not need to modify the system.
Compared with other access control schemes, our pu-
rification approach operated by APKLancet does not
bring any extra runtime overhead to either the app or
the system.

e We evaluated the effect of resecting a variety of repre-
sentative tumor payloads such as malicious code Gein-
imi and ad library Wooboo. Our work shows that tu-
mor payload is able to be split. Based on this fact,
APKLancet provides a novel way of access control at
the code level.

2. PRELIMINARIES

2.1 Tumor Payload

We define the term of tumor payload as the code that
is loosely linked to the primary function of the host app
and performs undesirable behaviors (e.g., collecting infor-
mation without proper notice or authorization from the end
user). Malicious code, ad libraries and analytics plugins that
contain privacy-violated function (although they may bring
profit to developer or help collecting information) can all be
regarded as tumor payload.

2.1.1 Malicious Code

Among all kinds of potentially unwanted code, malicious
code is perhaps the most dangerous one. Malicious code
refers to the code that intentionally conducts undesirable
behaviors without approval. On Android OS, malicious code
has evolved from simple functions such as sending SMS with-
out the authorization to sophisticated functions such as get-
ting root privileges by exploits, receiving and executing com-
mands from remote server. More works[12} |19] have de-
scribed the details on such threats caused by malicious code.
One example is the Geinimi malware, the first sophisticated
malware for Android found in the wild in 2010. Many legit-
imate apps are infected by being repackaged and the mali-
cious code that includes a backdoor-like functionality. Fol-
lowing Geinimi, the repackaging-based infections were soon
arising by other variants such as the Trojan ADRD. Re-
searchers found that 86.0% repackaged apps have included
malicious payloads after analyzing more than 1200 Android
malware samples in 49 different malware families[24].

2.1.2 Ad Library

Ad library is the most common third-party code among
Android apps. According to [2], about 50% of the apps
contain at least one ad library. Although users dislike ads
popping in their apps, developers can gain profit from it (by
user’s clicking the ads) so it is not reasonable to classify the
ad library as malicious code. However, if an app without
advertising is modified by injecting ad library for profit, the
intellectual property rights of the original author are vio-
lated, which harms the whole Android ecosystem. In this
situation, the injected library is obviously considered to be
unwanted code by both the end users and the developers.

2.1.3 Analytics Plugin

Being different from the ad library, analytics plugin is to
help developer collect user engagement data from their ap-
plications and make decision according to huge amount of
collected information. For instance, the Google Analytics
SDK for Android can help Android developers to collect data
such as the number of active users, location of the users who
use the application, etc. Analytics plugin generally runs in
background and does not intervene in any operation at the
front-end. Same as ad lib, analytics plugin should not be
defined as malicious code. The potential risk of analytic
plugin is that it may collect data related to user’s privacy.

2.2 Observations

Tumor payload has obvious characteristics. From the
viewpoint of program analysis, the tumor payload is a mod-
ule that is loosely linked to the primary function of the host
app and can be effectively partitioned|22]. From the per-

spective of pattern matching, typical tumor payload often
contains special meta-data information declared in the xml
file of the APK. And from the viewpoint of behavior moni-
toring, tumor payload generally involves privileged permis-
sion requirement and sensitive API invoking.

Another observation is that although tumor payloads may
be various, they are basically using the same repackaging
techniques, and most repackaging processes are reversible.
The typical repackaging process involves unpacking the orig-
inal APK to extract bytecode part and resource part, de-
compiling bytecode, modifying existing code (injecting new
code) and resource files, and repacking the modified contents
into a new package. Most of the repackaging procedures do
not make too much modification to the inside of the original
code but only add extra functional modules due to the ap-
plicability and dissemination. The function of the original
APK is often preserved, and the injected code is normally
a third-party module that is well encapsulated. Therefore,
it is feasible to split the tumor payload from the app and
purify the host app because the injection is detachable.

3. APK PURIFICATION

APK purification is the process of resecting tumor code
from an app. The goal is to resect the undesirable behav-
iors brought by the tumor code while preserving the original
function. It relies on the observation that tumor code is not
tightly interweaving with the major function of the APK.
To this end, we propose APKLancet, a tumor code exci-
sion system to conduct the app purification process. AP-
KLancet’s work flow consists of four stages(Fig . At the
first stage APKLancet mainly relies on existing tumor code
features to diagnose the APK file and filter out possible code
fragment related to tumor payload. At the second stage the
filtered suspicious code fragment is used as index to partition
the entire tumor payload from the benign code, the parti-
tioning process is conducted using program analysis. The
third stage is tumor code resection. The main purpose of
this stage is to resect the tumor payload, and patch the be-
nign code of the APK to prove the correctness of the normal
control flow. Final stage, the purified APK is verified and
the effect of tumor payload resection is measured.

3.1 The APKLancet System

APKLancet fulfils tumor payload excision task. The AP-
KLancet system contains three main components: APK an-
alyzer, APK rewriter and APK verifier.

3.1.1 APK Analyzer

The APK analyzer of APKLancet is used to analyze APK
file comprehensively. The implementation is based on An-
droguard[11]. The APK analyzer parses manifest file and
resource files to acquire declaration information of an app.
Relying on a feature database built from existing knowledge
of tumor payload, it then locates suspicious code fragment
and partitions the entire tumor code payload according to
the results from smali code analysis. Moreover, it analyzes
the type of tumor payload and conducts a patching process
to prove the purified APK work properly.

3.1.2 APK Rewriter

The APK rewriter is responsible for unpacking and de-
compiling APK file, and repacking the purified file into a
new app. It is mainly based on APKtool|4]. The APK

B »

-
» @ @ »

Partitioning Excision

-
With Tumor
Payload
new-array new-array new-array
const/s const/4, const/4
const const const
aput Finding aput aput z
const/16 Reference of const/16 Code const/16 ~
L if-Itvo Tumor Patching ifltvo % W, ification SN
new-instance }new'mstance [g
invoke-direct linvoke-direct | | | L______ I =
t-object sput-object sput-object a . .
zg:t onlec sget ! Sze‘ ! Purified App Validated
App

-

Vs
AN

Reference of
Tumor Payload

Patched

Figure 1: APK purification process

rewriter first unpacks the target APK file and decompiles
the executable part into smali code, decoding manifest file
and related resource files for the APK analyzer. Then, it re-
ceives the analyzing results from the APK analyzer, resects
the tumor payload and repairs the "incision” in remained
benign part. Finally, it reassembles the purified files into a
new app.

3.1.3 APK Verifier

The APK verifier is mainly an automatic Android logging
system to record and analyze app’s execution status. It
validates the purified app through dynamically recording its
log output and corresponding events such as network access,
and captures any possible exception that is introduced.

3.2 APK Diagnosis

To detect suspicious tumor payload, APKLancet conducts
an approach that relies on existing knowledge database rather
than analyzing the characteristics. The reason is that resect-
ing tumor code from an app is aggressive and risky compared
with solely detecting it. Any improper code resection will
damage the benign function. What’s worse, the effect of
code resection may not be detected immediately but after-
wards. Therefore, the strategy APKLancet adopts should
be extremely conservative to prove that the diagnosis will
not suffer from false positive.

To meet this requirement, APKLancet diagnoses an app
using the existing knowledge of tumor payload. It first builds
a tumor payload feature database summarized from known
malicious code and popular third-party libraries. For mali-
cious code, we have collected more than 8000 malware sam-
ples with 184 malware families from an automatic Android
program analysis sandbox[@]. To build the database, we first
randomly choose one app or two from each malware family
and extract the feature. Then we use the knowledge to guide

APKLancet to detect malicious payload in other malwares.
For third-party libraries, we defined the tumor libraries af-
ter investigating popular ad libraries and analytics plugins
since these libraries are more likely to be injected into benign
apps for the profit. However, considering it may cause the
result that legitimate apps bundled with tumor third-party
libraries will also be the target of our system, we leave the
issue discussed in Section [Bl

The content of the database is the representative code
fragment, as we called index class, of those tumor payloads.
In the following, we discuss the details about extracting in-
dex class from malicious code and tumor libraries.

e Malicious Code. An index class of malware is respon-
sible for certain events or functions connected to the
malicious behaviors of the tumor payload. The ad-
vantage of building the feature database according to
index classes instead of the whole payload is that it
is common to malware that generating new variants.
Even the tumor payload may be various, the index
classes of one malware family are generally unchanged.
Thus scanning these kinds of classes in tumor payload
is essential for extracting feature.

Since malicious code injecting aims to affect as much
apps as possible, tumor payload of malware usually
registers its own class as an entry point for convenience
to assure it could be executed in most cases, which can
avoid manual analysis to various app victims. Unlike
application on traditional commodity computer plat-
form, an Android application can have multiple entry
points. APKLancet focuses on five types of classes (in-
cluding inherited types) that can be registered as entry
point. The first four are the basic components of An-
droid: Activity, Service, Broadcast Receiver and Con-
tent Provider. The final class type, android.app. Applic-

ation, is the appointed class type of an app’s main
entry point and also considered in feature extracting.
APKLancet only needs to scan these classes in a tumor
payload and adds them into the tumor code feature
database.

e Third-party Library. Unlike the malicious code, tumor
third-party libraries such as popular ad libraries and
analytic plugins are always well-documented, developer-
friendly and less irregular. As a result, they usually
offer a set of unified interfaces to developers for ease
of use. It is not difficult for us to construct the tu-
mor code feature database by selecting some of the
most typical classes in the single library as the index
classes(i.e., AdView in AdMob).

After constructing the feature database, APKLancet checks
every class of an app that is one of the five entry point classes
or representative classes of third-party libraries to find out
the clue of tumor code. Different from signature-based de-
tection of the malicious code that is frequently used in An-
tivirus, APKLancet compares the content of a class of the
app with the feature database to identify the existence of
any tumor code. In order to defeat the widely used code ob-
fuscation technique, APKLancet leverages the fuzzy hashing
content comparison technique proposed by DroidMOSS[23|
to detect whether a class in an app is similar to one of the
tumor classes in our database. If such a class is detected,
APKLancet will label it as the index class to help conduct
tumor payload partitioning in the next stage.

3.3 Tumor Payload Partitioning

After obtaining suspicious index classes, the next thing is
to partition all of the tumor payload inside an app. In de-
tail, the task is to identify the entire tumor payload including
inserted executable code and its corresponding declaration
in manifest file, extra injected resource files and additional
libraries. To fulfil this task, APKLancet makes use of pro-
gram analysis technique to traverse the entire payload from
the detected index classes. According to the type of tumor
code, APKLancet deals them with different strategies.

3.3.1 Third-party Library Partitioning

The method APKLancet partitions third-party library is
mainly based on the knowledge of its insertion style. In
most cases, third-party library is a relatively independent
module which allows the partitioning with feasibility. The
bundling of a third-party library generally involves adding
three categories of information: a supporting Java jar file,
special meta-data tag, possible elements declared in layout
XML files and a small amount of modification to the original
code mainly for inserting new advertising View class.

Because library provider more or less publishes document
to illustrate how to integrate the lib into an app, APKLancet
leverages this information for partitioning the inserted li-
brary with ease. The inserted libraries are usually Java jar
files attached to the APK and can also be decompiled. If AP-
KLancet identifies suspicious index class in these libraries,
the whole Java jar file is labeled as the tumor payload (i.e.,
the whole package com.google.ads.*). APKLancet further
labels the inserted instructions in benign classes according
to the reference relationship. In general, each class of benign
code is searched to find any reference to any of the whole

tumor libraries. For instance, an AdView class is created as
follows:

adView = new AdView(this);
adView.setAdUnitId(MY_AD_UNIT_ID);
adView.setAdSize (AdSize.BANNER) ;

APKLancet could recognize the reference relationship of the
class AdView with the payload library, and hence label these
instructions(in smali code) as part of the tumor payload.
Finally, the meta-data tag and the elements in resource files
are also labeled as part of the tumor payload.

3.3.2 Malicious Code Partitioning

For malicious code in an infected app, the situation is
much more sophisticated. Unlike the situation of third-party
library, systematic knowledge is lacked in partitioning mali-
cious code. There is no document information for malicious
code and it usually uses transformation technique to avoid
being detected. Furthermore, instead of being injected as
an independent Java package (as the style of third-party li-
braries bundling), malicious payload is sometimes injected
into an existing Java package of benign parts to make the
identification more difficult, even the payload is still a rela-
tively independent module from the viewpoint of function-
ality. Hence APKLancet makes use of program dependency
analysis technique to help partition. APKLancet uses Al-
gorithm [1| to search malicious code in an APK. The input
of the algorithm include a set O of all classes in an APK
and a set F containing the already identified malicious in-
dex classes. The output is a set M that contains the entire
malicious class payload. The core part of the algorithm is
the function Find_invoke_dest(). It is based on the pro-
gram dependency graph of the app to extend the malicious
class set. If the already identified malicious class invokes any
method of a class that is not in system library, the invoked
class should be added into the malicious class set.

Algorithm 1 Malicious Code Class Searching
Require:

The set of class in an APK, O;

The set of malicious class in O, FE;

Ensure:
The set of malicious code class, M;

1. M=F

2: repeat

3: D=g

4: for all m in M do

5: D + Find_invoke_dest(m);

6: end for

7: for all din D do

8: if din O AND d not in M then
9: M+ d

10: end if

11: end for

12: until M is not modified
13: return M;

We choose a Java class as the basic unit in the algorithm
for the reason that malicious payload is always composed
of several complete classes. It is more likely for malware
to construct a new class to perform malicious behavior in-
stead of adding some malicious methods to specific benign

classes because adding independent module is more suitable
for large-scale deployment and needs less complicated man-
ual analysis to various original apps to assure the modified
apps still work.

3.4 Tumor Payload Resection

Although during tumor code partitioning stage an entire
payload has been identified, tumor payload resection is non-
trivial compared with the permission removal of app|16]. A
payload contains both relatively independent third-party li-
braries and bundled code that is tightly interweaved with
the host class. Therefore, simply resecting the entire pay-
load will lead to an improper execution or even crash the
app. Thus after partitioning tumor code payload, there still
remains fixing work to be done. The key point is to repair
the inserted code in benign code and information in the man-
ifest file. APKLancet adopts a three-step repairing strategy,
which is introduced in the following subsections.

3.4.1 Entry Point Reverting

An app declares many kinds of information in its mani-
fest file. An inserted tumor code payload also declares its
components in this file and adds or modifies entry points. In
detail, we consider the following frequently used entry point
modification approaches:

1. Directly added entry point. Tumor payload will di-
rectly register new Service, Broadcast Receiver and
Activity in manifest file. Under certain condition, the
tumor payload class is invoked.

2. Main entry point tampering. Some tumor code sim-
ply changes the original app’s main entry point class
(declared in the manifest file’'s <application> tag or
changed the ACTION_MAIN Intent) to its own class.
Through tampering the execution flow, it makes sure
that the inserted module is invoked.

3. Entry point inheritance modification. One trick used
by malicious code is to hide malicious entry point class
through class inheritance. In this case, the original
main entry point class is kept and malicious classes
can hide themselves without being declared in mani-
fest file. However, the inheritance relationship of main
entry point class is modified. For instance, in Fig [2]
the entry point class com.normal. Activity is originally
inherited from android.app. Activity, after the infection
its superclass is changed to com.mal. Activity which is
a malicious class. When the entry point class is exe-
cuted, the malicious function in its super class is firstly
invoked.

In order to make a fixed app work properly, APKLancet
needs to handle manifest file to resect the entry point items
related to tumor payload. Moreover, if the main entry point
class is modified to be a tumor code class, APKLancet tries
to recover the main entry point through searching a launcher
class. Once a launcher class is found, APKLancet will use it
as the new main entry point class. If no launcher class can
be found, APKLancet will further search for benign Activity
referred by current entry point class code, and uses the first
found Activity as new entry point class. If again there is
no candidate, APKLancet uses the first Activity declared
in manifest file as the new entry point class. For the case
of Entry point inheritance modification, we need to find the

android.app.
Activity;
com.mal.
Activity; X
com.normal.
Activity;

Figure 2: Entry Point Class Inheritance Modifica-
tion

first super class of the original entry point class which is not
in the tumor payload(i.e., android.app.Activity in Fig ,
and recover the inheritance relationship.

3.4.2 Benign Code Patching

APKLancet can identify every invoke instruction in de-
compiled smali code and check whether a benign code class
invokes a method of tumor code class. Further, the invoking
can be divided into two cases: 1) the invoked method is an
inherited method that overwrites the base method, and it
belongs to a class of entry point class type (inherits from
Activity, Service, Broadcast Receiver, Content Provider or
Application class), 2) the invoked method belongs to a com-
mon class of tumor code payload.

For the first case, the invoked methods in tumor code
generally overwrite the methods of base class (such as on-
Create()) and are special for Android application execution
model. Resecting this kind of methods will crash the app. In
this situation, APKLancet will replace the invoked methods
in tumor code class with the methods of its direct base class
(already fixed in inheritance recovery). For the second case,
we consider the invoking instruction and its data-dependent
instructions are inserted. Therefore, APKLancet analyzes
the following instructions that depend on the return value
of this invoking instruction, and patches the invoking in-
struction as well as following data-dependent instructions
with nop instruction.

APKLancet will also scan the decompiled smali code to
find any object reference relationship between benign code
class and tumor code class. Again, if an object reference
is found, APKLancet uses data dependency analysis to find
other instructions and objects that are data-dependent to
this object and then get it resected.

3.4.3 Payload Resection

After the fixing of benign code classes, APKLancet re-
sects tumor code directly. In addition, APKLancet checks
resource files related to tumor code. Native libraries(.so) and
Java libraries(.jar) that are used by tumor code only, file
under the lib and assets directory that are only referred by
tumor code are all considered as part of the tumor payload,
and should be resected.

Tumor payload Classes Items Resources Reference Entry

resected resected in resected patching point
manifest file patching

ADRD 25 5 0 No No
BaseBridge Variant.A 17 0 1 Yes Yes
BaseBridge Variant.B 69 10 3 Yes Yes
BaseBridge Variant.C 20 3 4 Yes No
DroidDream 10 3 5 No Yes
DroidKungFu 13 3 5 Yes No
DroidKungFu2 13 3 5 Yes No
Geinimi Variant.A 105 4 0 Yes Yes
Geinimi Variant.B 85 3 0 No Yes
PJAPPS 22 3 0 No No

Table 1: Characteristic of Different Tumor Payload

3.5 Verification

APKLancet introduces a verification process to assure that
the purified app is able to work properly and the purifica-
tion process does remove the unwanted behavior. It evalu-
ates the purification from the aspects of both feasibility and
effectiveness.

3.5.1 Feasibility

APKLancet adopts a very conservative strategy, which
does not allow new exception to crash the host app after the
purification. The verification work for purified app contains
two steps. First, the tested app is launched before purifica-
tion and operated manually, and the Android’s logcat output
is collected. Second, after the purification the tested app is
launched again with the same operation. APKLancet will
check the logcat output and compare it with the previous
record to determine whether the application is being exe-
cuted normally or throws any exception or crashes due to
the purification.

APKLancet does not adopt random test methodology such
as testing using Android Monkey. Instead, to assure the pu-
rified APK is still able to work properly, APKLancet needs
the involvement with manual test to deal with complex GUI
interactions such as password login.

3.5.2 Effectiveness

APKLancet evaluates the effectiveness of the tumor code
excision both statically and dynamically. The static evalu-
ation approach adopted by APKLancet takes advantage of
online malicious code analysis engine. The purified APK,
if containing tumor code beforehand, is submitted to Virus-
Total to check whether the malicious feature still exists.
This approach evaluates whether the purification does iden-
tify the malicious feature. The purified app is also executed
on real device for APKLancet to collect logcat output and
verify whether the features such as advertising is resected.

4. EVALUATION

4.1 General Testing

We tested APKLancet with repackaged apps from online
sandbox system Sanddroid@. Table shows the result that
how APKLancet splits the typical tumor payloads. The re-
sult shows that for each payload at least 10 classes are re-
sected during the purification process. To be more clear, we

define different purification results of one malware family as
different variants and label it in the form of Variant.A, etc.
From the results, we can see that nearly all the malwares
added or modified entry point of the original apps and it
is quite common for malwares to conduct simple modifica-
tion to benign part of the original app or add extra resource
files such as native libraries or jar files to inject malicious
behaviors.

In order to further effectively evaluate APKLancet, we
randomly choose 16 apps from each malware family in our
malware collection (we elaborately avoid those samples we
used to build feature databases though the malware family
they belong to should be included in our feature databases).
The characteristic of the chosen apps is that not only do
they contain either malicious code or third-party libraries
(some of them contain both), but all of these apps are also
able to execute well on latest version of the Android OS on
mainstream devices. We evaluate the sophisticated result
of malicious code purification. First, all of the tested apps
worked properly and did not terminate by exception accord-
ing to our manual test and Android’s logcat output. Also,
as Tableshows (malware family information given by Aeg-
isLab Antivirus), all of the samples experience a dramatic
decrease in VirusTotal detection result after the purifica-
tion, which means the tumor payload purification is effective
and malicious behaviors are resected from these malwares to
some extent. Although more than half of the samples are
not detected by any anti-virus engines in VirusTotal, we
also notice that a few anti-virus engines in VirusTotal still
regard the purified apps as malicious. After manually check-
ing those purified samples, we find that the same anti-virus
engine classifies the sample as a different malware family in
most cases. The root cause for the alert information is that
some third-party libraries such as analytics plugins and ad
libraries are still remained in the app, but are not defined
as tumor payload either by APKLancet or other majority of
Antivirus. Therefore, we treat this as false positive alert.

We also evaluate the effectiveness of resecting typical ad
libraries. After purification of the tested app with AdMob li-
brary, advertisement in app’s Ul is gone.(See Fig. What’s
more, such outputs (i.e., URL of AdMob or Javascript code)
that indicate the existence of AdMob, are not found in logcat
output after purification. At the meantime, other log infor-
mation created by benign code generally appears repeatedly
before and after the purification. Another case is app with

Package Name Malware Family | Before Purification | After Purification
com.appspot.swisscodemonkeys.steam ADRD 26/47 3/47
com.bytedroid.liveprints ADRD 35/47 0/44
com.caiping BaseBridge 30/45 1/48
com.computertimeco.minishot.android BaseBridge 32/48 0/47
com.game BaseBridge 34/48 0/47
com.hyxen.taximeter.app BaseBridge 34/48 0/45
com.power.SuperSolo DroidDream 38/47 0/46
super.mobi.eraser DroidDream 37/47 3/47
com.andtutu.stetris DroidKungFu 33/47 0/46
com.eguan.update DroidKungFu 34/47 0/47
com.bottleworks.dailymoney DroidKungFu2 35/47 3/46
com.allen.txthej DroidKungFu2 36/47 4/46
chairel.mm Geinimi 33/47 0/48
com.aac.cachemate Geinimi 33/47 1/47
com.electricsheep.dj Geinimi 33/48 1/47
cn.jingling.motu.photowonder PJAPPS 32/47 0/46

Table 2: VirusTotal Detection Result

A 0SS 3% il E el 489 21:06 0SS 3% il E sl 88 18:57

m sQLite # @5

A soLite #10E

sqlitemanager/

Figure 3: Advertisement Resection

Flurry library. If the Flurry library is loaded, logcat outputs
the following information:

D/FlurryAgent: Starting new session
D/FlurryAgent: Sending report to: http://data.flurry.com/aar.do
D/FlurryAgent: Report successful

Such information would not be found in the purified app
even for the same user operation is performed.

4.2 Case Study I: BaseBridge and Wooboo

The first case we studied is a repackaged app com.caiping.
APKLancet extracts the fuzzy hashing feature of every entry
point class of the apps. Compared with the feature database
built before, in this app 10 classes (com.android.view. custo-
m.*) are detected to be tumor code index classes. Then
APKLancet identifies the payload using Algorithm [I] taking
these index classes as input, and finds out class jackpal.and-
roidterm. Fxec and all classes of com.sec.android.providers.d-
rm.* are also tumor code.

After locating tumor code payload, APKLancet discov-
ers that the direct base class of main entry point caiping

class, the BaseAActivity class, which is not declared in the
manifest file, is suspicious and connected to the feature of
BaseBridge malware family.

.class public Lcom/caiping/caiping;
.super Lcom/android/view/custom/BaseAActivity;
.source "caiping.java"

That means the malicious code modifies the class inher-
itance to make the BaseAActivity class execute before the
original entry point class. If APKLancet simply resects the
BaseA Activity class, the inheritance of caiping class is bro-
ken. APKLancet thus redirects the base class of caiping
class to the base class of BaseA Activity, android. app. Activity.

After fixing the original inheritance of the main entry
point class, APKLancet checks references in benign code
and finds 4 method-invoking references (onCreate, <init>,
onCreateOptionsMenu and onOptionsltemSelected) of the
BaseAActivity class in benign code. All of these references
locate in the main entry points class com.caiping.caiping.
As we mentioned above, class caiping is a derived class of
the malicious class BaseAActivity, and the base class of
BaseAActivity is android.app.Activity. These 4 method-
invoking references should point to the methods in class
android.app. Activity, APKLancet hence patches the invok-
ing instruction through replacing the invoked method’s class
from BaseAActivity to android.app.Activity. For the tumor
object reference in this app, no data-dependent relationship
is found and APKLancet just resects any direct reference
of Lecom/android/view/custom/BaseAActivity in the benign
code. APKLancet also cleans the declaration of the tumor
code class in manifest file.

Finally, according to the string searched in smali code,

const-string vO, "androidterm"
invoke-static {vO},
Ljava/lang/System;->
loadLibrary(Ljava/lang/String;)V

The related androidterm library (libandroidterm.so) should
be resected.

After the purification and repackaging, the new app is
able to work. However, the test result of VirusTotal demon-
strates that 15 out of 47 antivirus engines still report the app

as malware and most of them classified it as Wooboo mal-
ware. We manually check the app and find that it contains
an unauthorized advertising library Wooboo. So we add the
Wooboo library’s feature into APKLancet’s database and re-
execute the purification process. Relying on the knowledge
of Wooboo directly, we regard the WoobooAdView as its in-
dex class and label the whole package where the index class
locates as the payload. This time APKLancet partitions all
classes of com.wooboo.adlib_android.* as tumor payload.

In benign code APKLancet find four references of the
tumor payload. All these references directly refer to the
class com.wooboo.adlib_android. WoobooAdView, hence AP-
KLancet recursively resects dependent instructions and def-
initions. After the purification, the purified app still works
properly under manual testing. And all 47 engines of Virus-
Total report no threat for this purified app.

4.3 Case Study II: Geinimi

The second case is an app com.electricsheep.dj contain-
ing malicious code of Geinimi malware family. According
to APKLancet’s feature database, the following classes are
identified as the index classes,

com.geinimi.AdServiceReceiver;
com.geinimi.AdService;
com.geinimi.custom.Ad1020_102001;

Then, using the index classes as input, APKLancet exe-
cutes Algorithm [I] and partitions classes com.geinimi.* as
the tumor code payload. After the partitioning of tumor
code payload, APKLancet checks references in benign code
and finds no reference to the tumor code payload. However,
APKLancet finds that in manifest file the main entry point
will be missing if the tumor code is resected. According
to the fixing policy of APKLancet, the replaced main entry
point should be first found in all launcher classes declared in
its manifest file(See Fig[4). In this case, APKLancet finds
DroidJumpActivity is the proper candidate and defines it as
the new main entry point class. Further analysis shows that
the inserted malicious entry point class will first perform its
own function, and then starts the DroidJumpActivity class.
The code fragments selected from several smali files to illus-
trate the behavior of launching the original entry point is
showed as followed(code fragment of exception handler part
is omitted):

AdService.smali:

const-string vO,
"com.electricsheep.dj.DroidJumpActivity"

sput-object vO,
Lcom/geinimi/AdService;->a:Ljava/lang/String;

AdActivity.smali:

sget-object vi,
Lcom/geinimi/AdService;->a:Ljava/lang/String;
invoke-static {v1}, Ljava/lang/Class;->
forName (Ljava/lang/String;)Ljava/lang/Class;
move-result-object vO0
new-instance v1, Landroid/content/Intent;
invoke-direct {v1, pO, vO},
Landroid/content/Intent;->
<init>(Landroid/content/Context;Ljava/lang/Class;)V
invoke-virtual {p0, vi},
Lcom/geinimi/AdActivity;->
startActivity(Landroid/content/Intent;)V

It proves that APKLancet’s fixing policy effectively recov-
ers the original entry point.

4.4 Case Study III: AdMob and Flurry

In this subsection, two popular third-party libraries, Ad-
Mob and Flurry, are studied to illustrate the effectiveness of
APKLancet’s purification. Actually AdMob and Flurry are
benign third-party ad libraries, but they may be injected
into legitimate apps by attackers for profit. What’s more,
they are typical full functional third-party ad libraries and
thus are good cases for demonstrating the excision process
and evaluating the purification.

The case for illustrating AdMob purification is an app
whose package name is com.zuecs.sqlitemanager. APKLancet
lists the class AdView as index classes in the feature database
and identifies the whole package of com.google.ads. *, which
contains the index class, as tumor payload. Then APKLancet
resects all the method invoking and object references from
the benign code to the tumor code, including 3 invoke in-
structions with the same pattern, 1 object reference and
several further dependent instructions in benign code. For
the case of Flurry, the sample is an app com.electricsheep.dj.
Also, APKLancet constructs the feature database by listing
FlurryAgent as index class and then resects the tumor pay-
load com.flurry.android.*. After that, APKLancet searches
the benign code and finds several method invoking instruc-
tions related to tumor payload, including onStartSession,
onEvent, onEndSession, etc.

One problem of the ad libraries purification is that Java
class is often referred in resource files (i.e., layout XML or
manifest). And this kind of information is not fixed and
cannot be detected with the knowledge of feature database.
For instacne, in main.zml file an AdMob’s AdView element
is referred as:

<com.admob.android.ads.AdView android:id="@id/ad"
android:layout_width="fill_parent"
android:layout_height="48.0dip"
admobsdk :backgroundColor="#ff00b8f5"
admobsdk:textColor="#ffffffff"
admobsdk :keywords="Android game droid jump" />

To solve this issue, the analysis of APKLancet for tumor
payload not only deals with reference in code part but also in
resource part. The patching of resource files is relatively easy
because APKLancet could resect this kind of declaration
directly.

S. LIMITATIONS

In this paper we do not focus on identifying the repack-
aged app which have been extensively studied|25]. One es-
sential requirement for the repackaging detection is that the
detection needs the knowledge of the original app. Actually,
there is no one-size-fits-all approach to find the knowledge
of the original app. It seems that the certificate of an APK
could help identify its provenance. The problem is that An-
droid allows either a certificate from the certificate author-
ity or a self-signed certificate. Thus it is not able to trust
an APK only through the certificate. Best practice suggests
that Google Play is the trust source for validating APK. But
even some APKs on Google Play are also repackaged version
of other applications. And not all of the applications can be
found on Google Play. Actually in China some famous ap-
plications(e.g., WeChat with more than 500 million users)
cannot even be downloaded from Google Play. Thus, Our

< andfoid:1abe1="@5tringfapp7néme" android:icon="@drawable/icon">
< android: theme="@*android: style/Theme.NoTitleBar.Fullscreen" android:label="@string/app_name"
android:name=".DroidJumpActivity" android:screenOrientation="portrait">

< >
< android:name="android.intent.category.LAUNCHER" />
</ >
<{ >
< android:label="@string/app_name" android:name=".SettingsActivity" android:screenOrientation="
portrait" />
< android:name="ADMOB_PUBLISHER ID" android:value="al4b5c886f95c4c" />
< android:theme="@+*android:style/Theme.NoTitleBar.Fullscreen" android:name="GameActivity"
android:screenOrientation="portrait" /=
< androld:name="com.gelniml.AdServiceRecelver =
< >
< android:name="android.intent.action.BOOT COMPLETED" /|
< android:name="android. intent. category.LAUNCHER" /=
</ >
</ >
< android:enabled="true" android:name="com.geinimi.AdService" android:permission="android.

permission.INTERNET" /=

< android:label="@string/app name" android:name="com.geinimi.custom.Ad1828 l82881"=
< >
< android:name="android.intent.action.MAIN" />
< android:name="android. intent. category.LAUNCHER" /=
</ >
</ =
<f >

Figure 4: Main Entry Point Fixing

APKLancet system focuses on the tumor payload ignoring
whether it is a repackaged app or not. APKLancet adopts
the policy of splitting any unrelated modules and resecting
them to assure the security.

Since our work does not include repackaging detection,
we do not distinguish whether the third-party libraries such
as ad libraries are imported by the original developers or
injected by malicious authors. We argue that the choice of
purification of third-party libraries should depend on the end
user. APKLancet hence just prompts the existence of any
potentially unwanted ad library based on the permissions it
requires, and the end user may decide whether to resect it
or not.

Our work assumes that the tumor code is embedded as
a module not closely interweaving with the host app. Al-
though this assumption stands in most cases, some unde-
sirable behaviors may still remains inside the application if
the tumor code author binds the tumor code with the be-
nign function cautiously. However this may not happen fre-
quently for the cost is generally very high(a profitless work
seldom lasts). What’s more, we purify the apps according
to the index classes in feature database, so benign apps that
generally do not include the index classes will not be affect
by APKLancet.

Finally, this work does not focus on the detection of mal-
ware. Our APKLancet relies on the tumor payload fea-
ture database built on existing knowledge of the undesirable
code. As a result, APKLancet could only deal with the an-
alyzed malicious tumor payload, and because APKLancet
is mainly a static analysis based system, it is not able to
control the dynamically loaded code. However, the goal of
APKLancet is only to purify the application with undesir-
able code so that it is good enough to be used again. It
adopts conservative strategy to only deal with apps that it
can be purified. It is a simple but effective approach to pre-
vent the known malicious tumor payload. APKLancet may
not able to purify any tumor payload perfectly, but it helps
deal with the known ones and can co-operate with other ac-

cess control system to counter other unknown undesirable
code.

6. RELATED WORK
6.1 Malware Analysis

Previous work on tumor payload analysis has mainly fo-
cused on malicious code analysis. Automated analysis tools
are also developed to help detect malicious code and differ-
ent evaluation schemes are adopted. DroidRanger|25] de-
tects malicious applications by using both permission-based
behavioral footprint and heuristics-based filtering scheme.
RiskRanker|13] performs large-scale security risk analysis
for zero-day malware detection. Researchers have also sys-
tematically characterize Android malwares from various as-
pects including installation methods, activation mechanisms
as well as the nature of carried malicious payload|24].

Our study does not lead to malware detection. The pur-
pose is to resect the tumor payload with the help of existing
summarized knowledge. On one hand, malware detection
and analysis contribute a lot to tumor payload identification.
On the other hand, our APKLancet system pays attention
to tumor payload, which contains not only malicious code
but also potentially risky third-party libraries. It needs to
address challenges brought by tumor payload purifying and
host apps fixing.

Our work is the first to measure the effectiveness of tumor
payload purification. Although our work relies on existing
knowledge of tumor code, we believe that most tumor pay-
load in repackaged applications are not novel, especially for
its injection style.

6.2 Repackaging Detection

Tumor payload detection and analysis is closely connected
to the problem of detecting repackaged legitimate app, which
is often injected with malicious payload. Studies vary from
pair-wise comparison to scalable detection. DNADroid|[8|
computes the similarity between two Android applications
by comparing program dependency graph to detect applica-

tion copying and cloning. And DroidMOSS|23| systemat-
ically detects repackaged apps on third-party Android mar-
ketplaces by applying fuzzy hashing technique to measure
an app’s similarity and then compares apps in pair. An-
Darwin[9] uses a scalable approach rather than comparing
apps pairwise to detect similar Android applications based
on semantic information. PiggyApp|22] scalably detects
piggybacked Android applications by organizing various fea-
ture vectors from apps into a metric space and applying
line-arithmic search algorithm. The prior works mainly fo-
cus on the similarity of the repackaged app and the original
one, while our work assumes that the target of our system
contains not only the repackaged apps but also some apps
with tumor payload injected by their authors. In this case,
APKLancet can deal with the tumor payload without the
support of the reference app.

6.3 Advertisement Splitting

Advertisement is controversial in Android app. An ad
library embedded in an app may send information about
the device and user to the ad server, thus raising concerns
about user privacy. Studies suggest isolating the advertising
or even separating it from the application process.

AdSplit|18] extends Android to separate advertising from
applications and leverage QUIRE’s mechanisms to let the re-
mote server validate the authenticity of client-side behavior.
AFrame|21] provides a developer a friendly method to iso-
late untrusted third-party code from the host applications
including process, permission, display and input isolation.
AdDroid[17] introduces a new advertising API and corre-
sponding advertising permissions to separate privileged ad-
vertising functionality from host applications. All of these
schemes require to extend the Android system trying to sep-
arate advertisement from host apps. In comparison, AP-
KLancet does not need to modify the Android system and
introduces no performance latency.

6.4 App Rewriting

Many fine-grained permission control systems use applica-
tion rewriting technique to implement sensitive API invok-
ing management. Aurasium|[20] repackages applications to
attach user-level sandboxing and policy enforcement code for
the aim of monitoring applications’ behavior about security
and privacy violation. In-App Reference Monitors(I-
ARM)[10] rewrites the Dalvik bytecode of applications to
enforce the security policies the framework users specified
towards a set of security-sensitive API methods. Dr. An-
droid|15] introduces a novel framework to address the is-
sue that many applications are allowed broader access than
required by adding finer-grained permissions. APKLancet
also rewrites the app. But instead of adding instrumenta-
tion code or extra libraries to monitor the behavior of the
app, it directly resects the undesirable part to enforce access
control policy, which is more concise.

7. CONCLUSION

Android apps are vulnerable to repackaging attack and
the undesirable code (tumor code) bundling is becoming a
popular way of spreading malicious behavior. Based on the
fact that the tumor code in Android APK is usually charac-
teristic and relatively independent in the app, it is possible
to resect the tumor from the original APK. In this paper,
we propose an effective tumor code diagnosis and purifica-

tion system called APKLancet. It consists of three compo-
nents, the APK analyzer, APK rewriter and APK verifier,
and carries out the workflow by four stages: 1) diagnosing
the tumor code relying on an existing knowledge database,
2) partitioning the tumor payload from the host app, 3) ex-
cision of the tumor code and restoring the benign function,
and 4) verifying the app’s benign function. APKLancet has
been applied to apps with typical tumor payloads and our
analysis indicates that it is feasible to defend the undesirable
behaviors through app’s purification.

8. ACKNOWLEDGEMENT

This work is supported by National Natural Science Foun-
dation of China (No0.61103040), National Science and Tech-
nology Major Projects (Grant No.2012ZX03002011), and
Technology Innovation Project of Shanghai Science and Tech-
nology Commission (No.13511504000). We also appreciate
Wenjun Hu, the author of SandDroid|6], for providing the
valuable malware samples.

9. REFERENCES

[1] 1.2 percent of google play store is thief-ware, study
shows. http://tinyurl.com/kvi7xvc. Online;
accessed Nov-2013.

[2] Ad networks - android library statistics.
http://www.appbrain.com/stats/libraries/ad.

[3] Ad vulna: A vulnaggressive (vulnerable & aggressive)
adware threatening millions.
http://tinyurl.com/pv4wts3. Online; accessed
Nov-2013.

[4] android-apktool, a tool for reverse engineering android
apk files.
http://code.google.com/p/android-apktool/\
Online; accessed Nov-2013.

[5] Android torch app with over 50m downloads silently
sent user location and device data to advertisers.
http://tinyurl.com/mhfyv3r. Online; accessed
Nov-2013.

[6] Sanddroid - an automatic android program analysis
sandbox. http://sanddroid.xjtu.edu.cn/. Online;
accessed Nov-2013.

[7] Virustotal - free online virus, malware and url
scanner. https://www.virustotal.com/ note =
Online; accessed Nov-2013,.

[8] J. Crussell, C. Gibler, and H. Chen. Attack of the
clones: Detecting cloned applications on android
markets. In Computer Security-ESORICS 2012, pages
37-54. Springer, 2012.

[9] J. Crussell, C. Gibler, and H. Chen. Andarwin:
Scalable detection of semantically similar android
applications. In Computer Security—-ESORICS 2013,
pages 182-199. Springer, 2013.

[10] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen.
I-arm-droid: A rewriting framework for in-app
reference monitors for android applications. Mobile
Security Technologies, 2012, 2012.

[11] A. Desnos. Androguard: Reverse engineering, malware
and goodware analysis of android applications... and
more (ninjal).

[12] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and
D. Wagner. A survey of mobile malware in the wild.

 http://tinyurl.com/kvf7xvc
http://www.appbrain.com/stats/libraries/ad
http://tinyurl.com/pv4wts3
 http://code.google.com/p/android-apktool/
http://tinyurl.com/mhfyv3r
http://sanddroid.xjtu.edu.cn/
https://www.virustotal.com/

[13]

[14]

[18]

In Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices, pages
3-14. ACM, 2011.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
Riskranker: scalable and accurate zero-day android
malware detection. In Proceedings of the 10th
international conference on Mobile systems,
applications, and services, pages 281-294. ACM, 2012.
S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and

D. Song. Juxtapp: a scalable system for detecting
code reuse among android applications. In Detection
of Intrusions and Malware, and Vulnerability
Assessment, pages 62-81. Springer, 2013.

J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel,

N. Reddy, J. S. Foster, and T. Millstein. Dr. android
and mr. hide: fine-grained permissions in android
applications. In Proceedings of the second ACM
workshop on Security and privacy in smartphones and
mobile devices, pages 3—14. ACM, 2012.

K. Kennedy, E. Gustafson, and H. Chen. Quantifying
the effects of removing permissions from android
applications.

P. Pearce, A. P. Felt, G. Nunez, and D. Wagner.
Addroid: Privilege separation for applications and
advertisers in android. In Proceedings of the 7th ACM
Symposium on Information, Computer and
Communications Security, pages 71-72. ACM, 2012.
S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit:
Separating smartphone advertising from applications.
CoRR, abs/1202.4030, 2012.

(19]

20]

(21]

(22]

23]

24]

[25]

G. Suarez-Tangil, J. Tapiador, P. Peris-Lopez, and
A. Ribagorda. Evolution, detection and analysis of
malware for smart devices. 2013.

R. Xu, H. Saidi, and R. Anderson. Aurasium:
Practical policy enforcement for android applications.
In Proceedings of the 21st USENIX Security
Symposium, 2012.

X. Zhang, A. Ahlawat, and W. Du. Aframe: Isolating
advertisements from mobile applications in android.
2013.

W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou.
Fast, scalable detection of piggybacked mobile
applications. In Proceedings of the third ACM
conference on Data and application security and
privacy, pages 185-196. ACM, 2013.

W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party
android marketplaces. In Proceedings of the second
ACM conference on Data and Application Security
and Privacy, pages 317-326. ACM, 2012.

Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Security and
Privacy (SP), 2012 IEEE Symposium on, pages
95-109. IEEE, 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,
get off of my market: Detecting malicious apps in
official and alternative android markets. In
Proceedings of the 19th Annual Network and
Distributed System Security Symposium, 2012.

	Introduction
	Preliminaries
	Tumor Payload
	Malicious Code
	Ad Library
	Analytics Plugin

	Observations

	APK Purification
	The APKLancet System
	APK Analyzer
	APK Rewriter
	APK Verifier

	APK Diagnosis
	Tumor Payload Partitioning
	Third-party Library Partitioning
	Malicious Code Partitioning

	Tumor Payload Resection
	Entry Point Reverting
	Benign Code Patching
	Payload Resection

	Verification
	Feasibility
	Effectiveness

	Evaluation
	General Testing
	Case Study I: BaseBridge and Wooboo
	Case Study II: Geinimi
	Case Study III: AdMob and Flurry

	Limitations
	Related Work
	Malware Analysis
	Repackaging Detection
	Advertisement Splitting
	App Rewriting

	Conclusion
	Acknowledgement
	References

